Liquid Metal Battery (LMB) technology is a new research area born from a different economic and political climate that has the ability to address the deficiencies of a society where electrical energy storage alternatives are lacking. The United States government has begun to fund scholarly research work at its top industrial and national laboratories. This was to develop Liquid Metal Battery cells for energy storage solutions. This research was encouraged during the Cold War battle for scientific superiority. Intensive research then drifted towards high-energy rechargeable batteries, which work better for automobiles and other applications. Intensive research has been carried out on the development of electrochemical rechargeable all-liquid energy storage batteries. The recent request for green energy transfer and storage for various applications, ranging from small-scale to large-scale power storage, has increased energy storage advancements and explorations. The criteria of high energy density, low cost, and extensive energy storage provision have been met through lithium-ion batteries, sodium-ion batteries, and Liquid Metal Battery development. The objective of this research is to establish that Liquid Metal Battery technology could provide research concepts that give projections of the probable electrode metals that could be harnessed for LMB development. Thus, at the end of this research, it was discovered that the parameter estimation of the Li//Cd-Sb combination is most viable for LMB production when compared with Li//Cd-Bi, Li-Bi, and Li-Cd constituents. This unique constituent of the LMB parameter estimation would yield a better outcome for LMB development.
This paper examines the transformative potential of e-government in public administration, focusing on its capacity to enhance service delivery, transparency, accessibility, cost efficiency, and civic engagement. The study identifies key challenges, including inadequate technological infrastructure, cybersecurity vulnerabilities, resistance to change within public institutions, and a lack of public awareness about e-government services. These barriers hinder the seamless operation and adoption of digital government initiatives. Conversely, the study highlights significant opportunities such as streamlined service delivery, enhanced transparency through real-time access to government data, increased accessibility for marginalized and remote communities, substantial cost savings, and greater civic engagement via digital platforms. Addressing these challenges through targeted strategies—enhancing technological infrastructure, bolstering cybersecurity, managing organizational change, and raising public awareness—can help policymakers and public administrators implement more effective and inclusive e-government initiatives. Additionally, the integration of these digital solutions can drive sustainable development and digital inclusion, fostering social equity and economic growth. By leveraging these opportunities, governments can achieve more efficient, transparent, and accountable governance. Ultimately, the successful implementation of e-government can transform the relationship between citizens and the state, building trust and fostering a more participatory democratic process.
This research implements sustainable environmental practices by repurposing post-industrial plastic waste as an alternative material for non-conventional construction systems. Focusing on the development of a recycled polymer matrix, the study produces panels suitable for masonry applications based on tensile and compressive stress performance. The project, conducted in Portoviejo and Medellín, comprises three phases combining bibliographic and experimental research. Low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) were processed under controlled temperatures to form a composite matrix. This material demonstrates versatile applications upon cooling—including planks, blocks, caps, signage, and furniture (e.g., chairs). Key findings indicate optimal performance of the recycled thermoplastic polymer matrix at a 1:1:1 ratio of LDPE, HDPE, and PP, exhibiting 15% deformation. The proposed implementation features 50 × 10 × 7 cm panels designed with tongue-and-groove joints. When assembled into larger plates, these panels function effectively as masonry for housing construction, wall cladding, or lightweight fill material for slab relieving.
The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
Cities are no longer viewed as creatures with a linear-climax-established cycle but as ecosystems with dynamic and complicated processes, with people as the primary component. Thus, we must understand urban ecology’s structure and function to create urban planning and appreciate the mechanisms, dynamics, and evolution that connect human and ecological processes. The ecological city (ecocity) is one of the city conceptions that has evolved with the perspective of urban ecology history. The concept of ecocity development within urban ecology systems pertains to recognizing cities as complex ecosystems primarily influenced by human activities. In this context, individuals actively engage in dynamic problem-solving approaches to address environmental challenges to ensure a sustainable and satisfactory quality of life for future generations. Therefore, it is necessary to study how ecocity has developed since it was initiated today and how it relates to the urban ecology perspective. This study aims to investigate the progression of scholarly publications on ecocity research from 1980 to 2023. Additionally, it intends to ascertain the trajectory of ecological city research trends, establish connections between scientific concepts, and construct an ecological city science network using keyword co-occurrence analysis from the urban ecology perspective. The present study used a descriptive bibliometric analysis and literature review methodology. The data was obtained by utilizing the Lens.org database, was conducted using the VOS (Visualization of Similarities) viewer software for data analysis. The urban ecology research area ecology of cities can be studied further from density visualization of ecosystem services and life cycle assessment. Finally, the challenges and future agenda of ecocity research include addressing humans by modeling functions or processes that connect humans with ecosystems (ecology of cities), urban design, ecological imperatives, integration research, and improving the contribution to environmental goals, spatial distribution, agriculture, natural resources, policy, economic development, and public health.
Objective: To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and cirrhotic nodules via radiomics models based on magnetic resonance images. Background: This study is to distinguish hepatocellular carcinoma and cirrhotic nodules using MR-radiomics features extracted from four different phases of MRI images, concluded T1WI, T2WI, T2 SPIR and delay phase of contrast MRI. Methods: In this study, the four kind of magnetic resonance images of 23 patients with hepatocellular carcinoma (HCC) were collected. Among them, 12 patients with liver cirrhosis were used to obtain cirrhotic nodules (CN). The dataset was used to extract MR-radiomics features from regions of interest (ROI). The statistical methods of MRradiomics features could distinguish HCC and CN. And the ability of radiomics features between HCC and CN was estimated by receiver operating characteristic curve (ROC). Results: A total of 424 radiomics features were extracted from four kind of magnetic resonance images. 86 features in delay phase of contrast MRI,86 features in spir phase of T2WI,86 features in T1WI and 88 features in T2WI showed statistical difference (p < 0.05). Among them, the area under the curves (AUC) of these features larger than 0.85 were 58 features in delay phase of contrast MRI, 54 features in spir phase of T2WI, 62 features in T1WI and 57 features in T2WI. Conclusions: Radiomics features extracted from MRI images have the potential to distinguish HCC and CN.
Copyright © by EnPress Publisher. All rights reserved.