In this article, generalized differential quadrature method (GDQM) is used to study the free vibrational behavior of variable cross section nano beams. Eringen's nonlocal elastic theory is taken into account to model the small scale effects and nonuniformity is assumed by exponentially varying the width of nano beam. Governing equation of motion is solved using generalized differential quadrature method with different numbers of sampling points. Effects of increasing the sampling points in reaching more accurate results for first three frequency parameters are presented and it is shown that after a specific number of sampling points, results merge to a certain accurate number. It is concluded that generalized differential quadrature method is able to reach the correct answers comparing to analytical results. Moreover, due to the stiffness softening behavior of small-scale structures, necessity of using Eringen's nonlocal elastic theory to model the small scale effects due to the frequency variation is observed. |
This review discusses the significant progress made in the development of CNT/GO-based biosensors for disease biomarker detection. It highlights the specific applications of CNT/GO-based biosensors in the detection of various disease biomarkers, including cancer, cardiovascular diseases, infectious diseases, and neurodegenerative disorders. The superior performance of these biosensors, such as their high sensitivity, low detection limits, and real-time monitoring capabilities, makes them highly promising for early disease diagnosis. Moreover, the challenges and future directions in the field of CNT/GO-based biosensors are discussed, focusing on the need for standardization, scalability, and commercialization of these biosensing platforms. In conclusion, CNT/GO-based biosensors have demonstrated immense potential in the field of disease biomarker detection, offering a promising approach towards early diagnosis. Continued research and development in this area hold great promise for advancing personalized medicine and improving patient outcomes.
The rise of internet-based pharmacies has transformed the healthcare sector, giving patients access to medications, information, and direct interaction with pharmacists. While online pharmacies have become popular around the world, there are challenges hindering their widespread use in developing countries due to a limited understanding of the factors affecting their acceptance and usage. To bridge this knowledge gap, a study utilized a model combining the unified theory of acceptance and use of technology (UTAUT 2) with the technology acceptance model (TAM) to explore the drivers behind online pharmacy usage in Oman. Through this framework, twelve hypotheses were. A survey involving 378 individuals familiar with online pharmacies was conducted. Structural equation modeling (SEM) was applied to analyze the data and test these hypotheses. The results indicate that factors such as perceived expectancy effort expectancy and facilitating conditions hedonic motivation, habit perceived risk, technology trust, and technology awareness play roles in influencing the adoption of online pharmacies in Oman. The findings suggest that personal innovation plays a moderating role in the connection between perceived risk and behavioral intention, while it has a negative moderating influence on the relationship between technology trust and behavioral intention. Word of mouth was identified as a moderator in enhancing the correlation between behavioral intention and online pharmacy adoption. This research emphasizes the moderating relationship of personal innovation and word of mouth on shaping consumer attitudes towards online pharmacies and their acceptance. In summary, these results add to the existing knowledge on pharmacy adoption and in developed areas such as provide practical insights for online pharmacy providers to improve their offerings and attract a larger customer base.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
Copyright © by EnPress Publisher. All rights reserved.