The purpose of the work is to study the transformation processes of constructing professional identity under the influence of new information technologies and to consider the evolution of views on the processes of scientific and practical understanding of new media resources in the context of the development of convergent journalism as a phenomenon of the modern information society. It was established based on the conducted research that the values and beliefs of journalists, reflecting the process of professional self-identification, are forming in the process of choosing certain options among a variety of alternatives and transforming further under the current conditions of the information and communication environment. In the process of the study, the article identifies the features, content, and main trends in the transformational processes of professional identity and professional culture of journalists in the context of technological changes in the media industry. The dynamics of the development of media convergence are shown from the point of view of the mutual influence of traditional and new media and the tendency of improving their technological and dialogue features and capabilities in content creation and broadcasting. An assessment is made of the degree of adaptation of regional media to modern conditions of the information and communication environment in the context of organizational, professional, and communicative convergence.
The telecommunications services market faces essential challenges in an increasingly flexible and customer-adaptable environment. Research has highlighted that the monopolization of the spectrum by one operator reduces competition and negatively impacts users and the general dynamics of the sector. This article aims to present a proposal to predict the number of users, the level of traffic, and the operators’ income in the telecommunications market using artificial intelligence. Deep Learning (DL) is implemented through a Long-Short Term Memory (LSTM) as a prediction technique. The database used corresponds to the users, revenues, and traffic of 15 network operators obtained from the Communications Regulation Commission of the Republic of Colombia. The ability of LSTMs to handle temporal sequences, long-term dependencies, adaptability to changes, and complex data management makes them an excellent strategy for predicting and forecasting the telecom market. Various works involve LSTM and telecommunications. However, many questions remain in prediction. Various strategies can be proposed, and continued research should focus on providing cognitive engines to address further challenges. MATLAB is used for the design and subsequent implementation. The low Root Mean Squared Error (RMSE) values and the acceptable levels of Mean Absolute Percentage Error (MAPE), especially in an environment characterized by high variability in the number of users, support the conclusion that the implemented model exhibits excellent performance in terms of precision in the prediction process in both open-loop and closed-loop.
Background: Various studies have demonstrated the usefulness of Google search data for public health-monitoring systems. The aim of this study is to be estimated interest of public in infectious diseases in infectious diseases in South Korea, the five other countries. Methods: We conducted cross-country comparisons for queries related to the H1N1 virus and Middle East respiratory syndrome coronavirus (MERS-CoV). We analyzed queries related to the novel coronavirus disease (COVID-19) from 20 January to 13 April 2020, and performed time-descriptive and correlation analyses on trend patterns. Results: Trends in H1N1, MERS-CoV, and COVID-19 queries in South Korea matched those in the five other countries and worldwide. The relative search volume (RSV) for the MERS-CoV virus increased as the cumulative number of confirmed cases in South Korea increased and decreased significantly as the number of confirmed cases decreased. The volume of COVID-19 queries dramatically increased as South Korea’s confirmed COVID-19 cases grew significantly at the community level. However, RSV remained stable over time. Conclusions: Google Trends provides real-time data based on search patterns related to infectious diseases, allowing for continuous monitoring of public reactions, disease spread, and changes in perceptions or concerns. We can use this information to adjust their strategies of the prevention of epidemics or provide timely updates to the public.
This research aimed to investigate the role of humanizing leadership in enhancing the effectiveness of change management strategies within organizations. Specifically, it focused on how humanizing leadership influences change outcomes and the extent to which organizational culture moderates this relationship. The study addressed critical questions regarding the impact of leadership behaviors, such as model vulnerability, emotional intelligence, open communication, and psychological safety on effective change management and employee performance. A quantitative approach was employed to provide a comprehensive analysis of the phenomena. Quantitative data were collected from a sample of 325 employees through surveys that measured perceptions of Humanizing leadership behaviors, organizational culture, and change outcomes. Data was analyzed by IBM SPSS 26.0. The findings revealed that humanizing leadership behaviors significantly enhances the success of change initiatives, primarily through improved employee engagement and reduced resistance. Organizational culture was found to play a moderating role, amplifying the positive effects of empathetic and inclusive leadership practices. The study provides actionable recommendations for organizational leaders and managers to foster a culture that supports humanizing leadership. By adopting leadership strategies that emphasize vulnerability, empathy, and inclusivity, organizations can enhance their adaptability and resilience against the backdrop of continuous change. These findings are particularly valuable for enhancing managerial practices and informing policy within corporate settings.
This study investigated the relationship between telecommunications development, trade openness and economic growth in South Africa. It determined explicitly if telecommunications development and trade openness directly impact economic growth or whether telecommunications strengthen or weaken the link between trade openness and economic growth using the ARDL bounds test methodology. The findings reveal that both telecommunications development indicators and trade openness significantly and positively impact South Africa’s GDP in the short and long terms. The study also found that control variables like internet usage and gross fixed capital formation significantly and positively influence GDP. Conversely, inflation was found to consistently affect GDP negatively and significantly. The findings from the ARDL cointegration analysis affirm a long-run economic relationship between the independent variables and GDP. The study also established that telecommunications development slightly distorts trade in the foreign trade-GDP nexus in South Africa. Despite this, the negative interaction effect is not substantial enough to overshadow the positive impact of trade openness on economic growth. From a policy perspective, the study recommends that South African policymakers prioritise enhancing local goods’ competitiveness in global markets and reducing trade barriers. It also advocates for improving the accessibility and affordability of telecommunications technologies to foster economic development.
This article presents a bibliographic review on the evolution of Geographic Information Systems (GIS) and their integration in the social sciences, which is important because the interrelation of these areas contributes to the knowledge of the people. In this sense, the objective was to contribute to the university academic knowledge, through the compilation, classification, analysis and synthesis of scientific works according to the subject treated. For this purpose, the historical, synthetic, dialectical, and analytical methods were used, with a descriptive and documentary type of research, obtaining as a result that the GIS are very useful in different fields of social sciences, ranging from archeology to sociology, including specific topics such as economics and criminology.
Copyright © by EnPress Publisher. All rights reserved.