Imaging technology plays a key role in guiding endovascular treatment of aortic aneurysm, especially in the complex thoracoabdominal aorta. The combination of high quality images with a sterile and functional environment in the surgical suite can reduce contrast and radiation exposure for both patient and operator, in addition to better outcomes. This presentation aims to describe the current use of this technique, combining angiotomography and intraoperative cone beam computed tomography, image “fusion” and intravascular ultrasound, to guide procedures and thus improve the intraoperative success rate and reduce the need for reoperation. On the other hand, a procedure is described to create customized 3D templates with the high-definition images of the patient’s arterial anatomy, which serve as specific guides for making fenestrated stents in the operating room. These customized fenestration templates could expand the number of patients with complex aneurysms treated minimally invasively.
Based on the characteristics of liquid lens sparse aperture imaging, a radiative multiplet array structure is proposed; a simplified model of sparse aperture imaging is given, and the analytical expression of the modulation transfer function is derived from the optical pupil function of the multiplet array structure; the specific distribution form of this multiplet array structure is given, and the structure parameters are approximated by the dimensionless method; the two types of radiative multiplet array structures are discussed, and the filling factor, redundancy, modulation transfer function and other characteristic parameters are calculated. The physical phenomena exhibited by the parametric scan are discussed, and the structural features and imaging characteristics of these two arrays are compared. The results show that the type-II structure with larger actual equivalent aperture and actual cutoff frequency and lower redundancy is selected when the average modulation transfer function and the IF characteristics of the modulation transfer function of the two structures are close to each other; the type-II structure has certain advantages in imaging; the conclusion is suitable for arbitrary enclosing circle size because the liquid lens-based multiplet array structure adopts dimensionless approximation parameters; compared with the composite toroidal structure, the radiative multiplet mirror structure has a larger actual cut-off frequency and actual equivalent aperture when the filling factor is the same.
A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.
Nanotechnology is a subject that studies, processes, and applies various functional materials, equipment, and systems, and controls substances on a nanoscale. Nanomedicine refers to its application in diagnosing, treating, preventing, and monitoring various diseases. Drugs administered through eye drops must travel a long distance to avoid various eye barriers reaching the posterior segment of the eye, to achieve the lowest drug level. This review focuses on nanotechnology-based eye disease treatment systems and highlights the obstacles affecting the drug management of eyes and nano-systems for the treatment of eye diseases. This paper summarizes the development prospect of nanotechnology and the challenges it faces in the treatment and diagnosis of ophthalmic diseases, to provide information and new ideas for the implementation of treatment and the development of a refractory eye disease management system.
The Guacimal River catchment has an area of 181 km2 and is located in the NW of Costa Rica, between the coordinates 84.745° W-10.016° N and 84.909° W-10.325° N. In this territory, as in most of the country, detailed geomorphological studies are scarce; therefore, the objective of this paper is to present the geomorphological mapping at a scale of 1:25,000 of the Guacimal River, which allows us to explain the dynamics of the agents involved in the modeling of the catchment. The work methodology consisted of three stages: pre-mapping, field activity and post-mapping, which resulted in a map in which ten relief forms are represented, ordered according to their morphogenesis in endogenous modeled and exogenous (fluvial, gravitational and littoral). This document will be the base line for land use planning, both continental and coastal, and for local risk management.
Root turnover is a key process of terrestrial ecosystem carbon cycle, which is of great significance to the study of soil carbon pool changes and global climate change. However, because there are many measurement and calculation methods of root turnover, the results obtained by different methods are quite different, and the current research on root turnover of forest ecosystem on the global regional scale is not sufficient, so the change law of root turnover of global forest ecosystem is still unclear. By collecting literature data and unifying the calculation method of turnover rate, this study integrates the spatial pattern of fine root turnover of five forest types in the world, and obtains the factors affecting fine root turnover of forest ecosystem in combination with soil physical and chemical properties and climate data. The results showed that there were significant differences in fine root turnover rate among different forest types, and it gradually decreased with the increase of latitude; the turnover rate of fine roots in forest ecosystem is positively correlated with annual average temperature and annual average precipitation; fine root turnover rate of forest ecosystem is positively correlated with soil organic carbon content, but negatively correlated with soil pH value. This study provides a scientific basis for revealing the law and mechanism of fine root turnover in forest ecosystem.
Copyright © by EnPress Publisher. All rights reserved.