Based on digital technology, the digital economy has typical characteristics of high efficiency, greenness, intelligence, innovation, strong penetration and so on, which can promote the sporting goods manufacturing industry (SGMI) to realize the goal of green development. This study selects panel data from 30 provinces in China over the period of 2011 to 2022. And the green total factor productivity of the sporting goods manufacturing industry (SGTFP) is used to reflect the green development of SGMI. The level of digital economy development (DIG) and the SGTFP are measured by using the entropy method and the Super-SBM model with undesirable outputs. Based on the method of coupling coordination degree model, the coordinated development degree of DIG and SGTFP is analyzed first. Then, by making use of the fixed effect model, intermediary effect model and spatial Durbin model, the influence of DIG on the green development of SGMI and its mechanism are empirically studied. The results show that DIG, SGTFP and the degree of their coupling and coordination are generally on the rise. The benchmark regression results show that the coefficient of DIG on SGTFP is 0.213; that is, the digital economy can significantly promote the improvement of green development in SGMI. According to the analysis of the spatial Durbin model, the impact of the digital economy on SGTFP has a certain spatial spillover, that is, the development of digital economy in the region will have a certain promoting effect on the green development of SGMI in the surrounding region. The intermediary effect model analyzes the influence mechanism and finds that the digital economy mainly boosts SGTFP through green innovation technology and energy consumption structure.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
Cartography includes two major tasks: map making and map application, which is inextricably linked to artificial intelligence technology. The cartographic expert system experienced the intelligent expression of symbolism. After the spatial optimization decision of behaviorism intelligent expression, cartography faces the combination of deep learning under connectionism to improve the intelligent level of cartography. This paper discusses three problems about the proposition of “deep learning + cartography”. One is the consistency between the deep learning method and the map space problem solving strategy, based on gradient descent, local correlation, feature reduction and non-linear nature that answer the feasibility of the combination of “deep learning + cartography”; the second is to analyze the challenges faced by the combination of cartography from its unique disciplinary characteristics and technical environment, involving the non-standard organization of map data, professional requirements for sample establishment, the integration of geometric and geographical features, as well as the inherent spatial scale of the map; thirdly, the entry points and specific methods for integrating map making and map application into deep learning are discussed respectively.
Spectrum map is the foundation of spectrum resource management, security governance and spectrum warfare. Aiming at the problem that the traditional spectrum mapping is limited to two-dimensional space, a three-dimensional spectrum data acquisition and mapping system architecture for the integration of space, sky and earth is presented, and a spectrum map reconstruction scheme driven by propagation model is proposed, which can achieve high-precision three-dimensional spectrum map rendering under the condition of sparse sampling. The spectrum map reconstructed by this method in the case of single radiation source and multiple radiation sources is in good agreement with the theoretical results based on ray tracing method. In addition, the measured results of typical scenes further verify the feasibility of this method.
The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
Copyright © by EnPress Publisher. All rights reserved.