The advent of the era of big data has brought great changes to accounting work, and vocational colleges and universities, as the main place for cultivating application-oriented new business talents, need to change the way of talent training in time in the face of this change. By describing the impact of the era of big data on the demand for new business talents, this paper analyzes the analysis of the training of new business and scientific and technological talents in vocational colleges and universities in the era of big data from the perspectives of talent training target positioning, professional curriculum setting and teacher quality, accurately locates the talent training goals of new business professional groups in vocational colleges, scientifically sets up the curriculum system, and comprehensively improves the teaching staff.
With the rapid development of China’s economy and society, the reform of talent training mode for business administration has become the most concerned and valued issue in the current teaching work in colleges and universities. From the current situation of undergraduate education curriculum system construction in vocational colleges, the traditional teaching methods of higher English still occupy the majority. The all English bilingual course for the undergraduate major of business administration takes the basic knowledge of language and the theory of natural science as the core content. Therefore, this paper will focus on how to build a perfect talent training mode for business administration majors that meets the actual needs and employment direction of students, and put forward specific teaching strategies in order to provide more application-oriented and professional development platforms for business administration students.
In Industry 4.0, the business model innovation plays a crucial role in enabling organizations to stay competitive and capitalize on the opportunities presented by digital transformation. Industry 4.0 is driven by digitalization and characterized by integrating various emerging technologies. These technologies can potentially change traditional business models and create new value propositions for customers. This paper aims to analyze and review the research papers through a bibliometric approach scientifically. The data were extracted from reputable Clarivate Web of Science (WoS) Core Collection sources from 2010 to 2023 (June). However, the publication started in 2018 for the research fields. The results show that scientific publications on research domains have increased significantly from 2020. VOSviewer, R Language, and Microsoft Excel were utilized for analysis. Bibliometric and Scientometric approaches conducted to determine and explore the publication patterns with significant keywords, topical trends, and content clustering better discussions of the publication period. The visualization of the data set related to research trends of Industry 4.0 in relation to Business Model Innovation resulted in several co-occurrence clusters namely: 1) Business Model Innovation; 2) Industry 4.0; 3) Digital transformation; and 4) Technology implementation and analysis. The study results would identify worldwide research trends related to the research domains and recommendations for future research areas.
Copyright © by EnPress Publisher. All rights reserved.