While extensive research has explored interconnectedness, volatility spillovers, and risk transmission across financial systems, the comparative dynamics between Islamic and conventional banks during crises, particularly in specific regions such as Saudi Arabia, are underexplored. This study investigates risk transmissions and contagion among banks operating in Islamic and conventional modes in the Kingdom of Saudi Arabia. Daily banking stock data spanning November 2018 to November 2023, encompassing two major crises—COVID-19 and the Russian-Ukraine war—were analyzed. Using the frequency TVP-VAR approach, the study reveals that average total connectedness for both banking groups exceeds 50%, with short-run risk transmission dominating over long-term effects. Graphical visualizations highlight time-varying connectedness, driven predominantly by short-run spillovers, with similar patterns observed in both Islamic and conventional banking networks. The main contribution of this paper is the insight that long-term investment strategies are crucial for mitigating potential risks in the Saudi banking system, given its limited diversification opportunities.
This study investigates the influence of perceived value and perceived risk on consumer intentions to purchase counterfeit luxury goods, drawing upon an integrated theoretical framework encompassing perceived value theory, risk perception theory, and consumer behavior models. Through a quantitative research design involving a structured survey and Structural Equation Modeling (SEM), the study examines the relationships among perceived value dimensions (functional, emotional, social, economic), perceived risk factors (financial, social, performance), consumer attitudes, and purchase intentions. The findings reveal that perceived value positively influences purchase intentions, with consumer attitudes acting as a critical mediating mechanism. Conversely, perceived risk negatively impacts purchase intentions, with this relationship also mediated by consumer attitudes. Furthermore, Bayesian Network analysis uncovers the indirect pathways through which perceived risk shapes purchase intentions via its influence on consumer attitudes. By integrating these theoretical frameworks and employing advanced analytical techniques, this study contributes to a comprehensive understanding of the complex decision-making processes underlying counterfeit luxury goods consumption. The findings provide valuable insights for policymakers, luxury brand managers, and consumer protection agencies in devising targeted strategies to address consumer perceptions of value and risk, ultimately mitigating the proliferation of counterfeit luxury goods.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
This study aims to identify the risk factors causing the delay in the completion schedule and to determine an optimization strategy for more accurate completion schedule prediction. A validated questionnaire has been used to calculate a risk rating using the analytical hierarchy process (AHP) method, and a Monte Carlo simulation on @RISK 8.2 software was employed to obtain a more accurate prediction of project completion schedules. The study revealed that the dominant risk factors causing project delays are coordination with stakeholders and changes in the scope of work/design review. In addition, the project completion date was determined with a confidence level of 95%. All data used in this study were obtained directly from the case study of the Double-Double Track Development Project (Package A). The key result of this study is the optimization of a risk-based schedule forecast with a 95% confidence level, applicable directly to the scheduling of the Double-Double Track Development Project (Package A). This paper demonstrates the application of Monte Carlo Simulation using @RISK 8.2 software as a project management tool for predicting risk-based-project completion schedules.
The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
Copyright © by EnPress Publisher. All rights reserved.