The hospital is a complex system, which evolving practices, knowledge, tools, and risks. This study aims to assess the level of knowledge about risks at Hassan II Hospital among healthcare workers (HCWs) working in three COVID-19 units. The action-research method was adopted to address occupational risks associated with the pandemic. The study involved 82 healthcare professionals in the three COVID-19 units mentioned above. All participants stated they were familiar with hospital risks. Seventy-four HCPs reported no knowledge of how to calculate risk criticality, while eight mentioned the Occurrence rating, Severity rating, and Detection rating (OSD) method, considering Occurrence rating, Severity rating, and Detection rating as key elements for risk classification. Staff indicated that managing COVID-19 patients differs from other pathologies due to the pandemic’s evolving protocols. There is a significant lack of information among healthcare professionals about risks associated with COVID-19, highlighting the need for a hospital risk management plan at a subsequent stage.
This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.
This paper studies the patent race problem of communication enterprises investing in communication technologies, and constructs a portfolio optimization model which considers the expected returns, investment risks, and replacement costs, in order to achieve the dual goals of maximizing the net investment income of backward enterprises and minimizing the expected investment risk. Through numerical experimental analysis, the optimal investment portfolio strategy under different risk levels and the impact of different risk levels on the net income of lagging company are obtained. The research results show that due to the backward research in the first stage of the backward enterprises, when their own investment decision-making power is relatively high, they can focus on the development of self-interested key technology areas in order to achieve the victory of the patent race.
This study investigates the influence of perceived value and perceived risk on consumer intentions to purchase counterfeit luxury goods, drawing upon an integrated theoretical framework encompassing perceived value theory, risk perception theory, and consumer behavior models. Through a quantitative research design involving a structured survey and Structural Equation Modeling (SEM), the study examines the relationships among perceived value dimensions (functional, emotional, social, economic), perceived risk factors (financial, social, performance), consumer attitudes, and purchase intentions. The findings reveal that perceived value positively influences purchase intentions, with consumer attitudes acting as a critical mediating mechanism. Conversely, perceived risk negatively impacts purchase intentions, with this relationship also mediated by consumer attitudes. Furthermore, Bayesian Network analysis uncovers the indirect pathways through which perceived risk shapes purchase intentions via its influence on consumer attitudes. By integrating these theoretical frameworks and employing advanced analytical techniques, this study contributes to a comprehensive understanding of the complex decision-making processes underlying counterfeit luxury goods consumption. The findings provide valuable insights for policymakers, luxury brand managers, and consumer protection agencies in devising targeted strategies to address consumer perceptions of value and risk, ultimately mitigating the proliferation of counterfeit luxury goods.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
This research analyzes disaster risk financing within the framework of the disaster management policy in Indonesia as the implementation of the Disaster Management Law, Number 24 of 2007, by examining recent issues, challenges, and opportunities in disaster financing. Utilizing a qualitative approach, the research systematically reviews various studies, reports, and existing regulations and policies to understand the current landscape comprehensively. Recent developments in disaster risk financing in Indonesia highlight the need for a nuanced exploration of the existing policy framework. Fiscal constraints, evolving risk landscapes, and the increasing frequency of disasters underscore the urgency of effective disaster risk financing strategies. Through a qualitative examination, this study identifies challenges while illuminating opportunities for innovation and improvement within the current policy framework. The contribution of this research extends to both theoretical and practical levels. Theoretically, it enriches the academic discourse on disaster risk financing by offering a nuanced understanding of the complexities involved. On a practical level, the findings derived from the examination provide actionable recommendations for policymakers and practitioners engaged in disaster management in Indonesia. The insights aim to inform the refinement of disaster management policies and practices, fostering resilience and adaptability in the face of evolving disaster scenarios.
Copyright © by EnPress Publisher. All rights reserved.