Google Earth images in the Marche Region of Central Italy revealed a circular structure consisting of a ring system made up of concentric hills and valleys. Cartography, DEM, geological, and available geophysical data were used to constrain the possible origin of the structure. Located in the Messinian foredeep deposits of the Central Apennines, it has a rim diameter of 3.75 km and a central uplift connected to its southernmost part. As it was formed in the clays of the Lower Pliocene, and clays are believed to have emerged definitively after the Upper Pliocene, its age might be constrained to the Lower Pleistocene. Similar concentric structures are usually found in impact craters, sedimentary domes, and volcanic landforms. As salt domes and magmatic activity are not found in this region, this study seeks to validate the results of previous work that it was the result of an ancient impact crater of hydrological, brachyanticline, or clayey diapiric origins. Specifically, an observed second ring portion with a curvature radius about double the first in size will be investigated in this work. This second ring portion appears to be concentric to the first one and is visible along its northern and western parts. Although double concentric rings are usually due to impact craters, the absence of the ring portion in the other two directions and the probable deviation of a river, deduced by studying hydrography, support the hypothesis that it might be of clay diapir origin.
The market demand for uniformity and productivity of commercial carrot roots has prioritized hybrid materials over open-pollinated varieties. In this sense, the objective of this work was to estimate the combining ability of carrot genitors for root productivity and resistance to leaf scorch. The experiments were conducted in Gama, DF, in the agricultural years 2012/13 and 2013/14. We evaluated 33 carrot hybrids, originated from crosses between three male-sterile populations, with 11 male-fertile S2 lines, all the genitors being of tropical origin. At 90 days after sowing, the severity of the leaf blight disease was estimated in the plots. At 100 days after sowing, harvesting was performed and root yield characters were evaluated. Analysis of variance and partial diallel analysis were performed for each year and jointly for both years. It was found that additive and non-additive genes are important in the manifestation of root yield and leaf blight resistance traits in carrot hybrids. The male-sterile parents with higher overall combining ability for root productivity are strains LM-649 and LM-650 and, among the male-fertile, strain LM-555-2-2. The best hybrids for root yield and leaf blight resistance are LM-649 × LM-555-11-1, LM-650 × LM-555-7-1 and LM-650 × LM-554-8-1.
This paper presents a brief review of risk studies in Geography since the beginning of the 20th century, from approaches focused on physical-natural components or social aspects, to perspectives that incorporate a systemic approach seeking to understand and explain risk issues at a spatial level. The systemic approach considers principles of interaction between multiple variables and a dynamic organization of processes, as part of a new formulation of the scientific vision of the world. From this perspective, the Complex Systems Theory (CST) is presented as the appropriate conceptual-analytical framework for risk studies in Geography. Finally, the analysis and geographic information integration capabilities of Geographic Information Systems (GIS) based on spatial analysis are explained, which position it as a fundamental conceptual and methodological tool in risk analysis from a systemic approach.
A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.
Aiming at the problem of incompatibility of biomass models of forest organs, taking Chinese fir in Fujian Jiangle State-owned Forest Farm as the research object, based on selecting the optimal independent model of each organ, the biomass compatibility model of Chinese fir was established with a three-level joint control scheme. The results show that the compatibility equation system based on the whole plant biomass can effectively solve the problem of incompatibility in the whole plant biomass, each sub-biomass and between sub-biomass. Besides, except for the leaf biomass model, all other biomass models have good fitting effect, which is of great significance to the guidance of the analysis of local Chinese fir biomass.
In order to maximize the potential energy utilization of agricultural and forestry waste and sludge, the experimental research on co-pyrolysis was carried out for two kinds of sludge (urban industrial sludge, paper sludge) and a typical biomass straw. The results show that adding biomass can effectively improve sludge pyrolysis characteristics; biomass straw and sludge, there are complex interactive effects between components in the co-pyrolysis process, and the characteristic parameters show nonlinear changes. When industrial sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate and the corresponding temperature gradually increase, and the pyrolysis index gradually increases; when paper sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate gradually increases, while the peak corresponding temperature gradually decreases, and the pyrolysis index gradually decreases. Combined with characteristic parameters and reaction kinetics analysis, it is suggested that the straw mixing proportion should be controlled at about 25% during the co-pyrolysis of industrial sludge and straw. During the co-pyrolysis of paper sludge and straw, it is suggested to control the straw blending ratio at about 75%.
Copyright © by EnPress Publisher. All rights reserved.