This scientific study aims to thoroughly assess the current status and evaluate key indicators influencing healthcare and the workforce in selected European Union (EU) member states. Building upon this ambitious research agenda, we focused on a comprehensive descriptive analysis of selected indicators within the healthcare sector, including healthcare financing schemes, overall employment in healthcare and social care, the number of graduates in healthcare (including physicians and general practitioners), as well as migration patterns within the healthcare sector. The data forming the basis of this analysis were systematically gathered from Organization for Economic Co-operation and Development (OECD) and Eurostat databases. Subsequently, we conducted a robust correlation analysis to explore the intricate relationships among these indicators. Our research endeavour aimed to identify and quantify the impact of these indicators on each other, with a focus on their implications for overall healthcare and the workforce in the respective countries. Based on the findings obtained, we derived several significant conclusions and recommendations. For instance, we identified that increasing employment in the healthcare sector may be associated with the overall quality of healthcare provision in a given country. These findings have important implications for policymaking and decision-making at the EU level. Therefore, we recommend that policymakers in these countries consider implementing measures to further develop the healthcare sector while also helping to retain and attract qualified professionals in the healthcare industry. Such recommendations could include improving healthcare infrastructure, incentivizing professional education and further training in the healthcare sector, and implementing policies to support healthcare provision more broadly.
"Physics Curriculum Standards for Compulsory Education (2011 Edition)" requires that physics teaching in junior high schools should focus on the development of students' scientific abilities, including the development of scientific knowledge and skills, scientific methods and attitudes. In view of the problems existing in middle school physics teaching such as being out of touch with real life, lack of interest, and traditional indoctrination teaching, integrating STEAM education concepts into physics experiment courses can greatly improve the interest of physics teaching and put students first. , teachers as instructors and assistants to improve the existing problems in the current physics teaching. Therefore, how to reasonably apply the STEAM education concept to the physical experiment course is a question worth exploring. I take "the design and production of floating sinks" as an example. The general idea is to build the main line of classroom teaching: the smoothness of knowledge logic, the progress of students' cognitive laws, the smooth design of teaching activities, and how to learn buoyancy and explore objects. To better understand the floating and sinking of objects when floating and sinking, interspersed with the educational concept of STEAM.
Fire accidents are one of the serious security threats facing the metro, and the accurate determination of the index system and weights for fire assessment in underground stations is the key to conducting fire hazard assessment. Among them, the type and quantity of baggage, which varies with the number of passengers, is an important factor affecting the fire hazard assessment. This study is based on the combination of subjective and objective AHP (Analytic Hierarchy Process) with the available Particle Swarm Optimisation algorithm PSO (Particle Swarm Optimization) and the perfect CRITIC (Criteria Importance Through Intercriteria Correlation) empowered fuzzy evaluation method on the metro station fire hazard toughness indicator system and its weights were determined, and a fuzzy comprehensive evaluation model of metro station safety toughness under the influence of baggage was constructed. The practical application proves that the method provides a new perspective for the fire risk assessment of underground stations, and also provides a theoretical basis for the prevention and control of mobile fire load hazards in underground stations.
The recent development of characteristic towns has encountered a multitude of challenges and chaos. Nevertheless, there have been many instances of information asymmetry due to the absence of an effective management model and an intuitive digital management system. Consequently, this has caused the erosion of public interests and inadequate supervision by public agencies. As society is progressing at a rapid pace, there is a growing apprehension regarding poor management synergy, outdated management practices, and limited use of technology in traditional construction projects. In today's technologically sophisticated society characterized by the “Internet+” and intelligent management, there is an urgent requirement to identify a more efficient collaborative management model, thereby reducing errors caused by information asymmetry. This paper focuses on the integration of building information modeling (BIM) and integrated project delivery (IPD) for collaborative management within characteristic towns in the PPP mode. By analyzing the available literature on the application status, this study investigates the implementation methods and framework construction of collaborative management while exploring the advantages and disadvantages. On this basis, this study highlights the problems that arise and provides recommendations for improvement. Considering this, the application of the BIM-based IPD model to characteristic towns in PPP mode will enhance the effectiveness of collaborative management among all parties involved, thereby fostering an environment that facilitates decision-making and operational management in the promotion of characteristic industries.
Copyright © by EnPress Publisher. All rights reserved.