This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
In this paper, we introduce some certain fuzzy soft algebraic notions of generalized concepts in LA-Γ-semigroups and study some properties of their families.
The construction industry is a significant contributor towards global environmental degradation and resource depletion, with developing economies facing unique challenges in adopting sustainable construction practices. This systematic review aims to investigate the gap in sustainable construction implementation among global counterparts. The study utilizes the P5 (People, Planet, Prosperity, Process, Products) Standard as a framework for evaluating sustainable construction project management based on environmental, social, and economic targets. A Systematic Literature Review from a pool of 994 Sustainable Construction Project Management (SCPM) papers is conducted utilizing the PRISMA methodology. Through rigorous Identification, Screening, and Eligibility Verification, an analysis is synthesized from 44 relevant literature discussing SCPM Implementations worldwide. The results highlight significant challenges in three main categories: environmental, social, and economic impacts. Social impacts are found as the most extensively researched, while environmental and economic impacts are less studied. Further analysis reveals that social impacts are a major concern in sustainable construction, with numerous studies addressing labor practices and societal well-being. However, there is a notable gap in research on human rights within the construction industry. Environmental impacts, such as resource utilization, energy consumption, and pollution, are less frequently addressed, indicating a need for more focused studies in these areas. Economic impacts, including local economic impact and business agility, are further substantially underrepresented in the literature, suggesting that economic viability is a critical yet underexplored aspect of sustainable construction. The findings underscore the need for further research in these areas to address the implementation challenges of sustainable project management effectively. This research contributes towards the overall research of global sustainable construction through the utilization of the P5 Standards as a new lens of determining sustainability performance for construction projects worldwide.
Money laundering has become a vital issue all over the world especially in the emerging economy over the last two decades. Till now, the developing and emerging countries face challenges about the remedies and inceptions of anti-money laundering issues. The objective of the study is to provide a thorough picture of the diversified movements of academic research on money laundering and anti-money laundering activities all over the world. This study aims at exploring the contemporary issues in Anti-money laundering based on the academic points of view. Further, the study is explored to render a portrayal of anti-money laundering activities from an emergency country context. A review of publicly available reports, published documents, daily newspapers, case studies, and previous academic research comprised the main sources of data for the study. It is found that the contemporary money laundering and anti-money laundering academic research might be classified into four broad categories. An emerging country like Bangladesh has taken little initiative to inductee anti-money laundering initiatives. It implies that for the successful implementation of anti-money laundering activities, good governance along with a congenial regulatory framework is a prerequisite in an emerging country context. In addition, the machine learning may enhance the quality of money laundering detections in Bangladesh.
The Sipongi System is essential in dealing with forest and land fires because this system provides real-time data that empowers stakeholders and communities to proactively overcome fire dangers. Its advantages are seen in its ability to provide detailed information regarding weather conditions, wind patterns, water levels in peatlands, air quality, and responsible work units. This data facilitates efficient decision-making and resource allocation for fire prevention and control. As an embodiment of Collaborative Governance, the Sipongi System actively involves various stakeholders, including government institutions, local communities, environmental organizations and the private sector. This cooperative approach fosters collective responsibility and accountability, improving fire management efforts. The Sipongi approach is critical in reducing forest and land fires in Indonesia by providing real-time data and a collaborative governance model. This results in faster response times, more effective fire prevention and better resource allocation. Although initially designed for Indonesia, the adaptable nature of the system makes it a blueprint for addressing similar challenges in other countries and regions, tailored to specific needs and environmental conditions. Qualitative research methods underlie this study, including interviews with key stakeholders and analysis of credible sources. Government officials, community leaders, environmental experts and organizational representatives were interviewed to comprehensively examine the mechanisms of the Sipongi System and its impact on forest and land fire management in Indonesia. Future research should explore the application of Sipongi Systems and collaborative governance in various contexts by conducting comparative studies across countries and ecosystems. Additionally, assessing the long-term impact and sustainability of the Sipongi System is critical to evaluating its effectiveness over time.
Copyright © by EnPress Publisher. All rights reserved.