The global economic recession has caused pessimism in terms of prospects of sales recovering in the future. The present study is an attempt to investigate the cost stickiness behavior by focusing on specific characteristics of companies. The research was done through documentary analysis and access to quantitative data, with the use of statistical methods for analysis as panel data. The statistical population of the actual study included all companies listed on the India stock exchange from 2017 to 2021. They were selected after screening 128 listed companies. The regression method was used to examine the relationship between variables and to present a forecast model. The results of testing the first hypothesis showed that companies’ costs are sticky and according to the results of this hypothesis, an increase in costs when the level of activity increases is greater than the level of reduction in costs when the volumes of the activities are decreased. The results of the second hypothesis showed a remarkable relationship between the cost stickiness and specific characteristics of companies (size, number of employees, long-term assets, financial leverage, and accuracy of profits forecast). Based on the third hypothesis, there is a notable difference between cost stickiness at different levels of specific characteristics of companies. Therefore, the results show that environmental uncertainty such as COVID-19, increases cost stickiness.
Poverty is a key challenge to socioeconomic development globally. However, the degree to which distance from a market contributes to poverty remains unclear. To provide insights into this relationship, we quantified the relationships between distance from markets and the per capita income of rural and urban people in China based on data from 29 provinces and 2651 counties. Our results illustrate the existence of a “geographical curse”; that is, a large separation between producers and consumers can exacerbate poverty for less-affluent rural residents, who pay a larger proportion of their income to send their products to market and to purchase goods from those markets. Programs to alleviate poverty should therefore consider seeking solutions associated with reducing the impact of that distance, such as subsidizing the transport of goods, improving the transportation infrastructure, supporting innovative business practices, and balancing the locations of producers and their markets.
The United States, Mexico, and Canada (USMCA) seek to promote fair wages and adequate working conditions, especially in Mexico, by strengthening labor rights and freedom of association. The objective of this research is to determine the factors that influence salary levels in the Mexican Automotive Industry (MAI), through a causality analysis in the Granger sense, to generate a panorama that allows a decision-making process in the Mexican salary policy. With data from the National Institute of Statistics and Geography, the Bank of Mexico and Statista, autoregressive vector models were estimated to determine causalities in the Granger sense. It was proven that minimum wage, employed personnel, production, total sales, and exports are some causes of remuneration in the sector, with the minimum wage being the most significant. The above suggests that the salary increase involves several actors, such as the government (minimum wage), the organization (production, sales and exports) and the market (employed personnel), therefore, the design of appropriate labor policies will contribute to the dignification of salaries inside the MAI.
This study employed a deductive approach to examine external HRM factors influencing job satisfaction in the post-pandemic hybrid work environment. Explores the intermediary functions of age, gender, and work experience in this particular environment. The data-gathering procedure consisted of conducting semi-structured interviews with carefully chosen 50 managers representing various sectors, industries, organizations, and professions. The applied approach was adopted to allow a systematic and unbiased investigation of the mediating variables. The study used SPSS 25 and Smart PLS 4 to analyze the model, enhancing understanding of HRM challenges in a constantly evolving workplace. The findings offer valuable insights for HR experts and businesses, highlighting the value of comprehending what methods HRM components influence job satisfaction to optimize employee well-being and productivity. The study provides applied recommendations designed for enhancing employee contentment in the AI-evolving professional atmosphere, shedding light on the importance of supportive leadership strategies, particularly during AI-triggered downsizing. Additionally, we welcome a new era to push forward in integrating and managing AI tools and technologies to automate decision-making and data processing. Results propose that Exogenous influences of human resource management (HRM) influence manager job satisfaction considerably. Specifically, downsizing caused by AI was found to have negative consequences, whereas diversity and restructuring have favorable effects. Gender was recognized as a crucial factor that influences outcomes, then age and years of experience have the most visible effect.
This study aims to identify the causes of delays in public construction projects in Thailand, a developing country. Increasing construction durations lead to higher costs, making it essential to pinpoint the causes of these delays. The research analyzed 30 public construction projects that encountered delays. Delay causes were categorized into four groups: contractor-related, client-related, supervisor-related, and external factors. A questionnaire was used to survey these causes, and the Relative Importance Index (RII) method was employed to prioritize them. The findings revealed that the primary cause of delays was contractor-related financial issues, such as cash flow problems, with an RII of 0.777 and a weighted value of 84.44%. The second most significant cause was labor issues, such as a shortage of workers during the harvest season or festivals, with an RII of 0.773. Additionally, various algorithms were used to compare the Relative Importance Index (RII) and four machine learning methods: Decision Tree (DT), Deep Learning, Neural Network, and Naïve Bayes. The Deep Learning model proved to be the most effective baseline model, achieving a 90.79% accuracy rate in identifying contractor-related financial issues as a cause of construction delays. This was followed by the Neural Network model, which had an accuracy rate of 90.26%. The Decision Tree model had an accuracy rate of 85.26%. The RII values ranged from 68.68% for the Naïve Bayes model to 77.70% for the highest RII model. The research results indicate that contractor financial liquidity and costs significantly impact construction operations, which public agencies must consider. Additionally, the availability of contractor labor is crucial for the continuity of projects. The accuracy and reliability of the data obtained using advanced data mining techniques demonstrate the effectiveness of these results. This can be efficiently utilized by stakeholders involved in construction projects in Thailand to enhance construction project management.
Copyright © by EnPress Publisher. All rights reserved.