An extensive assessment index system was developed to evaluate the integration of industry and education in higher vocational education. The system was designed using panel data collected from 31 provinces in China between 2016 and 2022. The study utilized the entropy approach and coupled coordination degree model to examine the temporal and spatial changes in the level of growth of the integration of industry and education in higher vocational education, as well as the factors that impact it. In order to examine how the integration of industry and education in higher vocational education develops over time and space, as well as the factors that affect it, we utilized spatial phasic analysis, Tobit regression model, and Dagum’s Gini coefficient. The study’s findings suggest that between 2016 and 2022, the integration of industry and education in higher vocational education showed a consistent improvement in overall development. Nevertheless, there are still significant regional differences, with certain areas showing limited levels of integration, while the bulk of regions are either in a state of low integration with high clustering or low integration with low clustering. Most locations showed either a “low-high” or “low-low” level of agglomeration, indicating a significant degree of spatial concentration, with a clear trend of higher concentration in the east and lower concentration in the west. The progress of industrial structure and the degree of regional economic development have a substantial impact on the amount of integration of industry and education in higher vocational education. There is a notable increase in the amount of integration between industry and education in higher vocational education, which has a favorable effect. Conversely, the local employment rate has a substantial negative effect on this integration. Moreover, the direct influence of industrial structure optimization is restricted. The Gini coefficient of the development level of integration of industry and education in higher vocational education exhibits a slight rising trend. Simultaneously, there is a varying increase in the Gini coefficient inside the group and a decrease in the Gini coefficient between the groups. The disparities in the level of integration between Industry and Education in the provincial area primarily stem from inter-group variations across the locations. To promote the integration of industry and education in higher vocational education, it is recommended to strengthen policy support and resource allocation, address regional disparities, improve professional configuration, and increase investment in scientific and technological innovation and talent development.
High-quality development in China requires higher vocational education, scientific and technological innovation, and sustainable economic development. The spatial distribution patterns of these factors show higher levels in the east and coastal areas compared to the west and inland regions, emphasizing the need for coupling coordination with the social economy. This study examines the impact of sustainable economic development on the coupling coordination degree using the spatial Durbin model. The results show a positive promotion and spillover effect, with regional variations. The main factors affecting the difference in coupling coordination are the amount of technology market contracts, fiscal expenditure on science and technology, patent application authorizations, tertiary industry output value, and the number of R&D institutions. According to the grey prediction model, the coupling coordination degree is expected to increase from 2022 to 2025, but achieving primary coordination may still be challenging in some areas. Therefore, strategies that utilize regional characteristics for coordinated development should be developed to improve the level of coupling coordination and create a mutually beneficial environment.
3D printing technology is an emerging technology in recent years, which can achieve rapid display of objects through the feeding method. It has been widely used in various industrial sectors. Higher vocational and technical colleges are one of the important ways to cultivate higher technical personnel from various industries. They must keep up with the pace of educational reform and introduce 3D printing technology into corresponding classrooms. Under the guidance of the course "Fundamentals of Mechanical Design", this article utilizes 3D printing technology to apply common PRO/E to products, achieving various motion mechanisms, making the originally monotonous classroom teaching lively and allowing students to immediately showcase their creativity.
Copyright © by EnPress Publisher. All rights reserved.