The pressing need to redefine the tourism industry’s relationship with nature and local communities has never been more critical. Ecotourism, as a paradigm of sustainable travel, holds transformative potential—not only for preserving our planet’s fragile ecosystems but also for fostering local cultural and economic development. In this context, the integration of circular economy principles offers innovative pathways to enhance sustainability across the tourism sector. The application of circular economy frameworks in tourism not only reduces environmental impact but also enhances economic viability by creating closed-loop systems. My interest in this topic stems from a personal conviction: Tourism should leave a positive mark, one that enriches rather than diminishes the destinations we visit. This study delves into how the hotel industry can align itself with ecotourism principles by embracing innovative, sustainable practices that minimize environmental impact while delivering authentic, high-quality experiences for travelers. Through the lens of green energy, resource optimization, and cultural integration, the research demonstrates that sustainability is both an ethical responsibility and a pathway to long-term competitiveness in tourism. By supporting local economies and protecting natural heritage, the industry can shift from being a passive observer of environmental degradation to a proactive steward of change. This work serves as a call to action for stakeholders: Our choices today will define the landscapes and cultural legacies available to future generations.
To address the escalating online romance scams within telecom fraud, we developed an Adaptive Random Forest Light Gradient Boosting (ARFLGB)-XGBoost early warning system. Our method involves compiling detailed Online Romance Scams (ORS) incident data into a 24-variable dataset, categorized to analyze feature importance with Random Forest and LightGBM models. An innovative adaptive algorithm, the Adaptive Random Forest Light Gradient Boosting, optimizes these features for integration with XGBoost, enhancing early Online romance scams threat detection. Our model showed significant performance improvements over traditional models, with accuracy gains of 3.9%, a 12.5% increase in precision, recall improvement by 5%, an F1 score increase by 5.6%, and a 5.2% increase in Area Under the Curve (AUC). This research highlights the essential role of advanced fraud detection in preserving communication network integrity, contributing to a stable economy and public safety, with implications for policymakers and industry in advancing secure communication infrastructure.
This paper aims to research the impact of psychological contract fulfilment on employee innovative work behaviour, and the mediating role of work engagement and the moderating role of social support. A quantitative analysis was adopted to address in research. Two-wave data were collected from 332 respondents working in China. Hierarchical regression analyses were conducted to assess the proposed hypotheses. Results revealed that psychological contract fulfilment positively impacted innovative work behaviour. In addition, engagement partially mediated the relationship between psychological contract fulfilment and innovative work behaviour. Furthermore, the findings suggest that social support moderates the relationship between work engagement and innovative work behaviour, and, in turn, moderates the indirect effect of psychological contract fulfilment on innovative work behaviour through work engagement. This research extends the generalizability of findings in the psychological contract literature. The results bear significant implications for the management of employees’ innovative work behaviour.
Modernizing the Internet of Things in Islamic boarding schools is essential to eliminate backwardness and skills gaps. Santri must have cognitive, affective, psychomotor, and creative intelligence to be ready to enter the industrial and business world. The students’ need for information transparency can be resolved using technology. This is because the empowerment of the Internet of Things has become a separate part of Islamic boarding school activities with students who can connect in real-time. This research aims to analyze current conditions and stakeholder involvement regarding the application of the Internet of Things in innovative Islamic boarding school services in the era of disruption. The Descriptive Method and Individual Interest Matrix Analysis were used by involving 130 respondents from the internal environment of the Daarul Rahman Islamic boarding school and completing the questionnaire through FGD (Focus Group Discussion) with the leaders of the Daarul Rahman Islamic boarding school. The results show that the current condition of Islamic boarding schools is that most need to learn or understand IoT, even though they are enthusiastic about learning new things and flexible in accepting change. The challenges required in implementing IoT are financial investment, increasing human resources through training, and synergy between Islamic boarding school policy makers. Mutually supportive and solid conditions are required between foundations, school principals, and school committees to implement IoT at Daarul Rahman Islamic Boarding School. Collaboration with various parties is needed because the implementation of IoT cannot be done alone by Islamic boarding schools but with the support of various related parties.
The enormous biological potential of herbal products is one of the main reasons for their frequent use in the production of dietary supplements and functional foods, which, in addition to their nutritional properties, have pharmacological and physiological effects. New scientific knowledge on the isolation of pharmacologically active compounds from complex matrices has led to significant advances in this field. Today, the process of extraction plays a significant scientific role, with “green” technologies occupying a special place in today’s science. Herbal medicine is one of the oldest human skills, which has worn off with its centuries-old application in the path of modern medicine. Microwave-assisted extraction, or more simply, microwave extraction, is a new extraction technique that combines traditional extraction solvents and microwaves. The mentioned method takes less time, consumes less energy, and has strong penetration power into the plant matrix to obtain more oils, but it can also reduce production costs. This can eventually increase the quality of the final product and reduce the product price at the consumer level. Microwave-assisted extraction could be useful to the herbal industry for oil extraction as well as other pharmaceutically important plant components. Based on a comparison and study of published literature, this research examines the present state of extraction procedures. This review includes a detailed discussion of the most important extraction techniques.
This paper presents a coupling of the Monte Carlo method with computational fluid dynamics (CFD) to analyze the flow channel design of an irradiated target through numerical simulations. A novel series flow channel configuration is proposed, which effectively facilitates the removal of heat generated by high-power irradiation from the target without necessitating an increase in the cooling water flow rate. The research assesses the performance of both parallel and serial cooling channels within the target, revealing that, when subjected to equivalent cooling water flow rates, the maximum temperature observed in the target employing the serial channel configuration is lower. This reduction in temperature is ascribed to the accelerated flow of cooling water within the serial channel, which subsequently elevates both the Reynolds number and the Nusselt number, leading to enhanced heat transfer efficiency. Furthermore, the maximum temperature is observed to occur further downstream, thereby circumventing areas of peak heat generation. This phenomenon arises because the cooling water traverses the target plates with the highest internal heat generation at a lower temperature when the flow channels are arranged in series, optimizing the cooling effect on these targets. However, it is crucial to note that the pressure loss associated with the serial structure is two orders of magnitude greater than that of the parallel structure, necessitating increased pump power and imposing stricter requirements on the target container and cooling water pipeline. These findings can serve as a reference for the design of the cooling channels in the target station system, particularly in light of the anticipated increase in beam power during the second phase of the China Spallation Neutron Source (CSNS Ⅱ).
Copyright © by EnPress Publisher. All rights reserved.