Nickel Oxide (NiO) nanoparticles (NPs), doped with manganese (Mn) and cobalt (Co) at concentrations up to 8%, were synthesized using the composite hydroxide method (CHM). X-ray diffraction (XRD) analysis confirmed the formation of a cubic NiO structure, with no additional peaks detected, indicating successful doping. The average crystallite size was determined to range from 15 to 17.8 nm, depending on the dopant concentration. Scanning electron microscopy (SEM) images revealed mostly spherical, agglomerated particles, likely due to magnetic interactions. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the incorporation of Mn and Co into the NiO lattice, consistent with the XRD results. The dielectric properties exhibited a high dielectric constant at low frequencies, which can be attributed to ion jump orientation and space charge effects. The imaginary part of the dielectric constant decreased with increasing frequency, as it became harder for electrons to align with the alternating field at higher frequencies. Both the real and imaginary dielectric constants showed behavior consistent with Koop’s theory, increasing at low frequencies and decreasing at higher frequencies. Dielectric loss was primarily attributed to dipole flipping and charge migration. AC conductivity increased with frequency, and exhibited higher conductivity at high frequencies due to small polaron hopping. These co-doped NPs show potential for applications in solid oxide fuel cells.
Protein- and peptide-based medications are recognized for their effectiveness and lower toxicity compared to chemical-based drugs, making them promising therapeutic agents. However, their application has been limited by numerous delivery challenges. Polymeric nanostructures have emerged as effective tools for protein delivery due to their versatility and customizability. Polymers’ inherent adaptability makes them ideal for meeting the specific demands of protein-delivery systems. Various strategies have been employed, such as enzyme inhibitors, absorption enhancers, mucoadhesive polymers, and chemical modifications of proteins or peptides. This study explores the hurdles associated with protein and peptide transport, the use of polymeric nanocarriers (both natural and synthetic) to overcome these challenges, and the techniques for fabricating and characterizing nanoparticles.
New hybrid magnetic materials based on HDPE filled with Со and Ni nanoparticles have been prepared via the metal vapor synthesis. Properties of the metal-polymer composites have been elucidated as a function of MVS parameters and metal nature. The Faraday method has been applied to characterize the magnetic properties of the systems. The microstructure of the samples has been studied with a number of X-ray and synchrotron techniques, including XRD, EXAFS and SAXS. Core-level and valence band spectra were measured by XPS. The peak at binding energy of 282.8 eV characteristic of C-Ni bond was recorded in the C 1s spectrum. It was shown that properties of nanocomposite materials with similar compositions are determined both by the synthesis conditions and post-synthesis factors.
Surface-enhanced Raman scattering (SERS) spectrum has the characteristics of fast-detection, high-sensitivity and low-requirements for sample pretreatment. It plays a more and more important role in the detection of organic pollutants. In this study, MIL-101 and Au nanoparticles were prepared by hydrothermal method and aqueous solution reduction method respectively, and MIL-101/Au composite nanoparticles were prepared by electrostatic interaction. The SERS properties of the composite substrate were optimized by adjusting the size of Au nanoparticles and the surface distribution density of MIL-101 nanoparticles. The detection limit of Rhodamine 6G (R6G) for the composite substrate with the optimal ratio was investigated, which was as low as 10–11 M. It is proved that MIL-101/Au composite nanoparticles have high sensitivity to probe molecules. When they are applied to the detection of persistent organic pollutants, the detection limit for fluoranthene can reach 10–9 M and for 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) can reach 10–5 M.
Recent technological advances in the fields of biomaterials and tissue engineering have spurred interest in biopolymers for various biomedical applications. The advantage of biopolymers is their favorable characteristics for these applications, among which proteins are of particular importance. Proteins are explored widely for 3D bioprinting and tissue engineering applications, wound healing, drug delivery systems, implants, etc., and the proteins mainly available include collagen, gelatin, albumin, zein, etc. Zein is a plant protein abundantly present in corn endosperm, and it is about 80% of total corn protein. It is a highly renewable source, and zein has been reported to be applicable in different industrial applications. Lately, it has gained attention in biomedical applications. This research interest in zein is on account of its biocompatibility, non-toxicity, and certain unique physico-chemical properties. Zein comes under the GRAS category and is considered safe for biomedical applications. The hydrophobic nature of this protein gives it an added advantage and has wider applications in drug delivery. This review focuses on details about zein protein, its properties, and potential applications in biomedical sectors.
In the past three decades, nanotechnology has attracted extensive attention. People have many expectations on the utilization of nanotechnology in medicine, but unfortunately, these expectations are unlikely to be realized. In the field of nanotechnology, the niche for building commercial products has not been developed yet. However, metal nanoparticles have attracted people’s attention since ancient times because of their optical properties, which are very different from those of bulk metals. By understanding the origin of these optical properties and using current technology, these nanoparticles can be manipulated to build a palette. Using micro measurement equipment, the palette can be printed with very good resolution.
Copyright © by EnPress Publisher. All rights reserved.