Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
While the rapid development of artificial intelligence has affected people's daily lives, it has also brought huge challenges to high school mathematics teaching, such as restructuring the classroom teaching structure, transforming the role of teachers, and selecting classroom teaching methods. Based on this, the article explores the application strategies of AI technology in improving knowledge introduction, improving mathematics classroom efficiency and stimulating students' learning interest, with a view to optimizing classroom teaching links, improving students' core discipline quality, and promoting the development of high school mathematics teaching informatization.
In the era of rapid information technology development, artificial intelligence (AI) and virtual reality (VR) technologies have gradually infiltrated the field of university English teaching, brought significant applications and impacted to English language learning in listening, speaking, writing, translation, and personalized learning. AI plays a vital role as an auxiliary teaching method in university English instruction, and the integration of VR technology further enhances teaching efficiency. This research will propose relevant recommendations to provide theoretical references for university English education in the age of AI, while also offering insights and guidance to educators in the education industry during the informatization reform of education.
This paper mainly discusses the application and impact of AI tools in vocational college students' career planning and employment preparation in Chinese Mainland. Through a review and analysis of relevant literature, this article found that artificial intelligence tools can provide students with more information and assistance, thereby improving their career cognition and employment competitiveness. However, if artificial intelligence tools are not open to Chinese users or students overly rely on these tools, it may also bring some negative effects, such as job anxiety and decreased self-awareness. Therefore, the government and teaching departments should strengthen the education of career planning and employment preparation, improve the artificial intelligence system, establish personalized service mode and other measures to provide more comprehensive and personalized career recommendation and employment services for higher vocational students in Chinese Mainland.
Under the developing trend of artificial intelligence (AI) technology gradually penetrating all aspects of society, the traditional language education industry is also greatly affected [1]. AI technology has had a positive impact on college English teaching, but it also presents challenges and negative impacts. On the positive side, AI technology can provide personalized learning experiences, real-time feedback, and autonomous learning opportunities, and so on. However, it may also lead to a lack of communication between students and humans, resulting in a decline in students’ interpersonal skills, and cause students’ dependence on online learning resources as well as possible risks to student data privacy and security, and other negative impacts. To address these challenges, teachers can adopt the following countermeasures: improving teachers’ skills in the use of AI technology incorporated in the classroom, offering personalized instruction to reduce students’ dependence on AI technologies, emphasizing the cultivation of students’ humanistic literacy and interpersonal communication ability. Additionally, colleges and technology providers should strengthen data security and privacy protection to ensure the safety and confidentiality of student data. By implementing comprehensive measures, we can maximize the advantages of AI technology in college English teaching while overcoming potential issues and challenges.
We studied the role of industry-academic collaboration (IAC) in the enhancement of educational opportunities and outcomes under the digital driven Industry 4.0 using research and development, the patenting of products/knowledge, curriculum development, and artificial intelligence as proxies for IAC. Relevant conceptual, theoretical, and empirical literature were reviewed to provide a background for this research. The investigator used mainly principal (primary) data from a sample of 230 respondents. The primary statistics were acquired through a questionnaire. The statistics were evaluated using the structural equation model (SEM) and Stata version 13.0 as the statistical software. The findings indicate that the direct total effect of Artificial intelligence (Aint) on educational opportunities (EduOp) is substantial (Coef. 0.2519916) and statistically significant (p < 0.05), implying that changes in Aint have a pronounced influence on EduOp. Additionally, considering the indirect effects through intermediate variables, Research and Development (Res_dev) and Product Patenting (Patenting) play crucial roles, exhibiting significant indirect effects on EduOp. Res_dev exhibits a negative indirect effect (Coef = −0.009969, p = 0.000) suggesting that increased research and development may dampen the impact of Aint on EduOp against a priori expectation while Patenting has a positive indirect effect (Coef = 0.146621, p = 0.000), indicating that innovation, as reflected by patenting, amplifies the effect of Aint on EduOp. Notably, Curriculum development (Curr_dev) demonstrates a remarkable positive indirect effect (Coef = 0.8079605, p = 0.000) underscoring the strong role of current development activities in enhancing the influence of Aint on EduOp. The study contributes to knowledge on the effective deployment of artificial intelligence, which has been shown to enhance educational opportunities and outcomes under the digital driven Industry 4.0 in the study area.
Copyright © by EnPress Publisher. All rights reserved.