Root turnover is a key process of terrestrial ecosystem carbon cycle, which is of great significance to the study of soil carbon pool changes and global climate change. However, because there are many measurement and calculation methods of root turnover, the results obtained by different methods are quite different, and the current research on root turnover of forest ecosystem on the global regional scale is not sufficient, so the change law of root turnover of global forest ecosystem is still unclear. By collecting literature data and unifying the calculation method of turnover rate, this study integrates the spatial pattern of fine root turnover of five forest types in the world, and obtains the factors affecting fine root turnover of forest ecosystem in combination with soil physical and chemical properties and climate data. The results showed that there were significant differences in fine root turnover rate among different forest types, and it gradually decreased with the increase of latitude; the turnover rate of fine roots in forest ecosystem is positively correlated with annual average temperature and annual average precipitation; fine root turnover rate of forest ecosystem is positively correlated with soil organic carbon content, but negatively correlated with soil pH value. This study provides a scientific basis for revealing the law and mechanism of fine root turnover in forest ecosystem.
Universities play a key role in university-industry-government interactions and are important in innovation ecosystem studies. Universities are also expected to engage with industries and governments and contribute to economic development. In the age of artificial intelligence (AI), governments have introduced relevant policies regarding the AI-enabled innovation ecosystem in universities. Previous studies have not focused on the provision of a dynamic capabilities perspective on such an ecosystem based on policy analysis. This research work takes China as a case and provides a framework of AI-enabled dynamic capabilities to guide how universities should manage this based on China’s AI policy analysis. Drawing on two main concepts, which are the innovation ecosystem and dynamic capabilities, we analyzed the importance of the AI-enabled innovation ecosystem in universities with governance regulations, shedding light on the theoretical framework that is simultaneously analytical and normative, practical, and policy-relevant. We conducted a text analysis of policy instruments to illustrate the specificities of the AI innovation ecosystem in China’s universities. This allowed us to address the complexity of emerging environments of innovation and draw meaningful conclusions. The results show the broad adoption of AI in a favorable context, where talents and governance are boosting the advance of such an ecosystem in China’s universities.
Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
Fintech as a three-dimensional phenomenon reflects the rapidly changing technological, financial and business environment. The bibliometric analysis of scientific articles allowed us to identify the main themes and create a map of the field of fintech influences. Systematization of scientific articles revealed the influence of economic development and socio-demographic inequality on fintech development. Government regulatory policies can accelerate the digitisation of financial services and financial inclusion and help the fintech sector face geopolitical challenges. Fintech’s impact was divided into three areas: financial stability and sustainable development, the business ecosystem and human behaviour. The research we summarised allowed us to identify the mechanisms through which fintech influences various fields. A complex approach to the influence of fintech enables us to understand the phenomenon and make better decisions.
Payment for forest ecosystem services (PFES) policy is a prevalent strategy designed to establish a marketplace where users compensate providers for forest ecosystem services. This research endeavours to scrutinise the impact of PFES on households’ perceptions of forest values and their behaviour towards forest conservation, in conjunction with their socio-economic circumstances and their communal involvement in forest management. By incorporating the social-ecological system framework and the theory of human behaviours in environmental conservation, this study employs a structural equations model to analyse the factors influencing individuals’ perceptions and behaviours towards forest conservation. The findings indicate that the payment of PFES significantly increases forest protection behaviour at the household level and has achieved partial success in activating community mechanisms to guide human behaviour towards forest conservation. Furthermore, it has effectively leveraged the role of state-led social organisations to alter local individuals’ perceptions and behaviours towards forest protection.
The coronavirus pandemic has reinforced the need for sustainable, smart tourism and local travel, with rural destinations gaining in their popularity and leading to increased potential of smart rural tourism. However, these processes need adjustments to the current trends, incorporating new transformative business concepts and marketing approaches. In this paper we provide real life examples of new marketing approaches, together with new business models within the context of the use of new digital technologies. Via hermeneutic research approach, consisting of the secondary analysis of the addressed subject of smart rural tourism in adversity of the COVID-19 and 6 semi-structured interviews, the importance of technology is underscored in transforming rural tourism to smart rural tourist destinations. The respondents in the interview section were chosen based on their direct involvement in the presented examples and geographical location, i.e. France, Slovenia and Spain, where presented research examples were developed, concretely within European programmes, i.e. Interreg, Horizon and Rural Development Programme (RDP). Interviews were taking place between 2022 and 2023 in person, email or via Zoom. This two-phased study demonstrates that technology is important in transforming rural tourism to smart tourist destinations and that it ushers new approaches that seem particularly useful in applying to rural areas, creating a rural digital innovation ecosystem, which acts as s heuristic rural tourist model that fosters new types of tourism, i.e. smart rural tourism.
Copyright © by EnPress Publisher. All rights reserved.