The application of nanotechnology in the food industry enables prioritization of consumers’ needs. Nanotechnology has the ability to provide new forms of control on food structure; therefore, this technology has higher industrial value. This paper briefly introduces the main concepts of nanotechnology and its correlation with size reduction performance. This paper also introduces the main nanobjects and their potential applications in food, and summarizes various studies and their applications in food industry.
A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.
Carbon-based hollow structured nanomaterials have become one of the hot areas for research and development of hollow structured nanomaterials due to their unique structure, excellent physicochemical properties and promising applications. The design and synthesis of novel carbon-based hollow structured nanomaterials are of great scientific significance and wide application value. The recent research on the synthesis, structure and functionalization of carbon-based hollow structured nanomaterials and their related applications are reviewed. The basic synthetic strategies of carbon-based hollow structure nanomaterials are briefly introduced, and the structural design, material functionalization and main applications of carbon-based hollow structure nanomaterials are described in detail. Finally, the current challenges and opportunities in the synthesis and application of carbon-based hollow structured nanomaterials are discussed.
Alfalfa is considered the most used forage crop in the world, its main use is for cattle feeding, due to its high nutritional value, specifically in protein and digestible fiber. Currently, the trend in agriculture is to reduce the application of chemicals and among them are fertilizers that pollute soil and water, so the adoption of new technologies and other not so new is becoming a good habit among farmers. Nanotechnology in the plant system allows the development of new fertilizers to improve agricultural productivity and the release of mineral nutrients in nanoforms, which has a wide variety of benefits, including the timing and direct release of nutrients, as well as synchronizing or specifying the environmental response. Biofertilizers are important components of integrated nutrient management and play a key role in soil productivity and sustainability. While protecting the environment, they are a cost-effective, environmentally friendly and renewable source of plant nutrients to supplement chemical fertilizers in the sustainable agricultural system. Nanotechnology and biofertilization allow in a practical way the reduction in the application of chemicals, contributing to the sustainability of agriculture, so this work aims to review the relevant results on biofertilization, the use of nanotechnology and the evaluation of the nutritional composition of alfalfa when grown with the application of biofertilizers.
The semiclassical boron–boron interatomic pair potential is constructed in an integral form allowing its converting into the analytical one. It is an ab initio B–B potential free of any semiempirical adjusting parameters, which would serve as an effective tool for the theoretical characterization of all-boron and boron-rich nanomaterials.
Nanomaterials stand as transformative elements across diverse domains, ranging from biotechnology, aircraft, aviation, and space exploration to medicine, health, environmental preservation, resources, energy, and aerospace. This issue, comprising nine original research articles and two insightful reviews, we embark on a journey to unravel the multifaceted uses of nanomaterials, with a special emphasis on their contributions to environmental protection and medicine. Delving into the unique traits of various nanomaterials, our aim is to provide readers with a comprehensive understanding that transcends conventional boundaries, fostering a deeper appreciation for the impact of nanomaterials.
Copyright © by EnPress Publisher. All rights reserved.