The Circular Economy (CE) concept has been recognized as the core strategy that can support sustainable business through technological innovation that enables CE transition by focusing on resource savings. This case study conducts research on business strategy in achieving CE transition in an agroindustry company, by performing SWOT analysis to assess internal and external factors. The SWOT model provides valuable results that an effective strategy could maximize strengths and opportunities, minimize weaknesses and threats in business by boosting circularity on business-critical factors. The CE adoption by agroindustry company mostly focuses on efficient organic waste management, energy-efficient production, and production process. This study case reveals that while technology plays a significant role in advancing CE, there is still a significant need to pay attention to the social aspect in supporting the creation of worker-owned cooperatives by creating space for employee involvement in finding innovations and adopting technology in business transition into CE process. Social innovation through the involvement of employees by sharing CE vision, synergizing and optimizing internal potential, and building up the green innovation culture has created an internal conducive climate to put CE principle into practice. Further result shows that a labor-intensive company’s business strategy prioritizes employment and job security over maximizing profits, which directly leads to the economic welfare and social protection of the business operation that makes an inclusive business.
The selection of a suitable place for an activity is an important decision made for a project, which requires assessing it from different points of view. Educational use is one of the most complicated and substantial uses in urban space that requires precise and logical attention to its location and neighborhood with similar and consistent uses. Faculties of universities are educational spaces that should be protected against physical and moral damage to create a healthy educational environment. To do this, it is necessary to find and assess the factors affecting the location of educational spaces. The extant study aimed at finding and assessing the factors affecting the location of educational spaces to locate art and architecture schools or faculties in 4 important universities. The present study is applied developmental research in terms of nature and descriptive-analytical in terms of method. This study used the AHP (Analytical Hierarchy Process) weighing and controlled the prioritization through the TOPSIS (Technique for Order Preference by Similarity) technique in the methodology phase. Since there was no criterion and metric for these centers, six were chosen as the primary metrics after reviewing the relevant theoretical foundations, early investigations, and collecting effective data. Finally, the results indicated the most important factors of vehicular or roadway access, pedestrian access, slope, parking, adjacency, neighborhood, and area. Among the mentioned factors, pedestrian access (w: 0.4231) had the highest weight and was the priority in the location of architecture faculty in studied campuses and areas inside the universities.
The Sipongi System is essential in dealing with forest and land fires because this system provides real-time data that empowers stakeholders and communities to proactively overcome fire dangers. Its advantages are seen in its ability to provide detailed information regarding weather conditions, wind patterns, water levels in peatlands, air quality, and responsible work units. This data facilitates efficient decision-making and resource allocation for fire prevention and control. As an embodiment of Collaborative Governance, the Sipongi System actively involves various stakeholders, including government institutions, local communities, environmental organizations and the private sector. This cooperative approach fosters collective responsibility and accountability, improving fire management efforts. The Sipongi approach is critical in reducing forest and land fires in Indonesia by providing real-time data and a collaborative governance model. This results in faster response times, more effective fire prevention and better resource allocation. Although initially designed for Indonesia, the adaptable nature of the system makes it a blueprint for addressing similar challenges in other countries and regions, tailored to specific needs and environmental conditions. Qualitative research methods underlie this study, including interviews with key stakeholders and analysis of credible sources. Government officials, community leaders, environmental experts and organizational representatives were interviewed to comprehensively examine the mechanisms of the Sipongi System and its impact on forest and land fire management in Indonesia. Future research should explore the application of Sipongi Systems and collaborative governance in various contexts by conducting comparative studies across countries and ecosystems. Additionally, assessing the long-term impact and sustainability of the Sipongi System is critical to evaluating its effectiveness over time.
This study offers a focused examination on Xinfang system, China’s unique mechanism particularly on its ability and efficacy in mediating land disputes between farmers and governmental bodies for social governance purposes. Based on interviews with 10 farmers, the study elucidates the system has low entry barriers and user-friendly, thus fast becoming the preferred system option when dealing with land conflicts. Xinfang facilitates direct communication between farmers and government officials, thereby in line with the sociocultural conventions of the rural populace. The study also highlights several constraints. While the Xinfang system employs a multifaceted approach to conflict resolution, including negotiation and grassroots governmental intervention, it lacks legislative power and institutional authority that are required for effective management of more complex or multi-stakeholder land disputes. The study advocates for a comprehensive reassessment and subsequent reform of the Xinfang system, focusing particularly on its mechanisms and procedures for dispute resolution. Such reforms are not merely instrumental for the more robust safeguarding of farmers’ land rights, but also for enhancing the overall integrity and public trust in China’s legal and administrative frameworks.
In the evolving landscape of the 21st century, universities are at the forefront of re-imagining their infrastructural identity. This conceptual paper delves into the transformative shifts witnessed within university infrastructure, focusing on the harmonisation of tangible physical assets and the expanding world of digital evolution. As brick-and-mortar structures remain pivotal, integrating digital platforms rapidly redefines the academic landscape, optimising learning and administrative experiences. The modern learning paradigm, enriched by this symbiotic relationship, offers dynamic, flexible, and comprehensive educational encounters, thereby transcending traditional spatial and temporal constraints. Therefore, this paper accentuates the broader implications of this infrastructural metamorphosis, particularly its significant role in driving economic development. The synergistic effects of physical and digital infrastructures enhance academic excellence and position universities as key players in addressing and navigating global challenges, setting forth a resilient and forward-looking educational blueprint for the future. In conclusion, integrating physical and digital infrastructures within universities heralds a transformative era, shaping a holistic, adaptable, and enriched academic environment poised to meet 21st-century challenges. This study illuminates the symbiotic relationship between tangible university assets and digital innovations, offering insights into their collective impact on modern education and broader economic trajectories.
Copyright © by EnPress Publisher. All rights reserved.