In order to maximize the potential energy utilization of agricultural and forestry waste and sludge, the experimental research on co-pyrolysis was carried out for two kinds of sludge (urban industrial sludge, paper sludge) and a typical biomass straw. The results show that adding biomass can effectively improve sludge pyrolysis characteristics; biomass straw and sludge, there are complex interactive effects between components in the co-pyrolysis process, and the characteristic parameters show nonlinear changes. When industrial sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate and the corresponding temperature gradually increase, and the pyrolysis index gradually increases; when paper sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate gradually increases, while the peak corresponding temperature gradually decreases, and the pyrolysis index gradually decreases. Combined with characteristic parameters and reaction kinetics analysis, it is suggested that the straw mixing proportion should be controlled at about 25% during the co-pyrolysis of industrial sludge and straw. During the co-pyrolysis of paper sludge and straw, it is suggested to control the straw blending ratio at about 75%.
The use of different energy sources and the worry of running out of some of them in the modern world have made factors such as environmental pollution and even energy sustainability vital. Vital resources for humanity include water, environment, food, and energy. As a result, building strong trust in these resources is crucial because of their interconnected nature. Sustainability in security of energy, water and food, generally decreases costs and improves durability. This study introduces and describes the components of a system named “Desktop Energetic Dark Greenhouse” in the context of the quadruple nexus of water, environment, food, and energy in urban life. This solution can concurrently serve to strengthen the sustainable security of water, environment, food, and energy. For home productivity, a small-scale version of this project was completed. The costs and revenues for this system have been determined after conducting an economic study from the viewpoints of the investor and the average household. The findings indicate that the capital return period is around five years from the investor’s perspective. The capital return on investment for this system is less than 4 years from the standpoint of the households. According to the estimates, this system annually supplies about 20 kg of vegetables or herbs, which means about one third of the annual needs of a family.
An experiment was carried out to investigate the effect of different organic nutrient solutions and day of harvest on growth parameters, biomass and chemical composition of hydroponically grown sorghum red fodder. The experiment was a 3 × 2 factorial design comprising of 3 nutrient solutions (cattle, poultry and rabbit) and 2 harvesting regimes (8th and 10th day). Cattle, poultry and rabbit dungs were collected fresh and processed into nutrient solutions. Sorghum red seeds were treated, planted on trays, and irrigated twice per day with organic nutrient solution according to the treatments. Growth parameters which were investigated included fodder mat thickness, seedling height, leaf length and width, number of leaves, fresh and dry matter yield; and proximate composition. The results showed that sorghum red fodder irrigated with cattle manure nutrient solution (NS) harvested at 10 days was higher in all, except one (fodder mat thickness) of the growth parameters considered. The crude protein (CP) was highest and similar (P > 0.05) for Poultry NS harvested at 8 and 10 days, and Cattle NS at 10 days (13.13%, 12.67%, and 12.69% respectively). The ash content also favored Cattle NS at 10 days. Cattle NS at 10 days harvest was significantly (P < 0.05) the highest (7.00%), but comparable (P > 0.05) with Rabbit NS at 10 days for NDF. Fresh and DM yields were highest for Cattle harvested at 10 and 8 days respectively. The study recommends Cattle NS as hydroponic organic NS for sorghum red as it enhances fresh and dry matter yields, and nutritive values.
The co-hydrothermal carbonization of biomasses has shown many advantages on charcoal yield, carbonization degree, thermal-stability of hydrocar and energy recovered. The goal of this study is to investigate the effect of co-combustion of cattle manure and sawdust on energy recovered. The results show that ash content ranged between 10.38%–20.00%, indicating that the proportion of each variable influences energy recovered. The optimum is obtained at 51% cattle manure and 49% sawdust revealing 37% thermal efficiency and 3.9 kW fire power. These values are higher compared to cattle manure individually which gives values of 30% and 2.3 kW respectively for thermal efficiency and fire power. Thus, the mixture of biomasses enhances energy recovered both in combustion and hydrothermal carbonization. Volatile matter is lower in mixture predicting that the flue gas releases is lower during combustion. Fixed carbon is higher in mixture predicting that energy recovered increases during the combustion of mixture than cattle manure individually. Higher Carbon content was noticed in mixture than cattle manure indicating that the incorporation of sawdust enhances heating value. The incorporation of sawdust in cattle manure can also enhance energy recovered and is more suitable for domestic and industrial application.
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
Copyright © by EnPress Publisher. All rights reserved.