Kampar Regency, as the largest pineapple producer in Riau Province, has yet to provide significant added value for the surrounding SMEs. The limitations in technology and innovation, infrastructure support, and market access have prevented this potential from being optimally utilized. A Technopark can provide the necessary facilities and infrastructure to enhance production efficiency, innovation, and product quality, thus driving local economic growth. The objective of this study is to identify and determine potential locations for the development of a pineapple-based Technopark in Kampar Regency. This study is crucial as a fundamental consideration in selecting the technopark location and assessing the effectiveness and success of the technopark area. The method used in this study is AHP-GIS to analyze relevant parameters in the site selection process for the technopark area. Parameters considered in this study include slope, land use, availability of raw materials, accessibility of roads, access to water resources, proximity to universities, market access, population density, and landfill. The analysis results indicate that the percentage of land highly suitable for the technopark location is 0.78%, covering an area of 8943 hectares. Based on the analysis, it is recommended that potential locations for the development of a pineapple SMEs-based technopark in Kampar Regency are dispersed in Tambang District, encompassing three villages: Rimbo Panjang, Kualu Nenas and Tarai Bangun. The findings of this study align with the spatial planning of Kampar Regency.
Currently, numerous companies intend to adopt digital transformation, seeking agility in their methodologies to reinvent products and services with higher quality, reduced costs and in shorter times. In the Peruvian context, the implementation of this transformation represents a significant challenge due to scarcity of resources, lack of experience and resistance to change. The objective of this research is to propose a digital transformation model that incorporates agile methodologies in order to improve production and competitiveness in manufacturing organizations. In methodological terms, the hypothetical deductive method was used, with a non-experimental cross-sectional design and a quantitative, descriptive and correlational approach. A questionnaire was applied to 110 managers in the manufacturing sector, obtaining a Cronbach’s alpha coefficient of 0.992. The results reveal that 65% of the participants consider that the level of innovation is regular, 88% think that the competition in their companies is of a regular level, and 76% perceive that the level of change is deficient. The findings highlight the importance of digital transformation in manufacturing companies, highlighting the adoption of agile methodologies as crucial to improving processes and productivity. In addition, innovation is essential to developing high-quality products and services, reducing costs and time. Digital transformation with agile methodologies redefines the value proposition, focusing on the customer and improving their digital experience, which differentiates companies in a competitive market.
Background: Digital transformation in the sports industry has become increasingly crucial for sustainable development, yet comprehensive empirical evidence on policy effectiveness and risk management remains limited. Purpose: This study investigates the impact of policy support and risk factors on digital transformation in sports companies, examining heterogeneous effects across different firm characteristics and regional contexts. Methods: Using panel data from 168 sports companies listed on China’s A-shares markets and the New Third Board from 2019 to 2023, this study employs multiple regression analyses, including baseline models, instrumental variables estimation, and robustness tests. The digital transformation level is measured through a composite index incorporating digital infrastructure, capability, and innovation dimensions. Results: The findings reveal that policy support significantly enhances digital transformation levels (coefficient = 0.238, p < 0.01), while financial risks demonstrate the strongest negative impact (−0.162, p < 0.01). Large firms and state-owned enterprises show stronger responses to policy support (0.312 and 0.278, respectively, p < 0.01). Regional development levels significantly moderate the effectiveness of policy implementation. Conclusions: The study provides empirical evidence for the differential effects of policy support and risk factors on digital transformation across various firm characteristics. The findings suggest the need for differentiated policy approaches considering firm size, ownership structure, and regional development levels. Implications: Policy makers should develop targeted support mechanisms addressing specific challenges faced by different types of firms, while considering regional disparities in digital transformation capabilities.
Copyright © by EnPress Publisher. All rights reserved.