Artificial intelligence (AI) has rapidly evolved, transforming industries and addressing societal challenges across sectors such as healthcare and education. This study provides a state-of-the-art overview of AI research up to 2023 through a bibliometric analysis of the 50 most influential papers, identified using Scopus citation metrics. The selected works, averaging 74 citations each, encompass original research, reviews, and editorials, demonstrating a diversity of impactful contributions. Over 300 contributing authors and significant international collaboration highlight AI’s global and multidisciplinary nature. Our analysis reveals that research is concentrated in core journals, as described by Bradford’s Law, with leading contributions from institutions in the United States, China, Canada, the United Kingdom, and Australia. Trends in authorship underscore the growing role of generative AI systems in advancing knowledge dissemination. The findings illustrate AI’s transformative potential in practical applications, such as enabling early disease detection and precision medicine in healthcare and fostering adaptive learning systems and accessibility in education. By examining the dynamics of collaboration, geographic productivity, and institutional influence, this study sheds light on the innovation drivers shaping the AI field. The results emphasize the need for responsible AI development to maximize societal benefits and mitigate risks. This research provides an evidence-based understanding of AI’s progress and sets the stage for future advancements. It aims to inform stakeholders and contribute to the ongoing scientific discourse, offering insights into AI’s impact at a time of unprecedented global interest and investment.
This paper uses existing studies to explore how Artificial Intelligence (AI) advancements enhance recruitment, retention, and the effective management of a diverse workforce in South Africa. The extensive literature review revealed key themes used to contextualize the study. This study uses a meta-narrative approach to literature to review, critique and express what the literature says about the role of AI in talent recruitment, retention and diversity mapping within South Africa. An unobtrusive research technique, documentary analysis, is used to analyze literature. The findings reveal that South Africa’s Human Resource Management (HRM) landscape, marked by a combination of approaches, provides an opportunity to cultivate alternative methods attuned to contextual conditions in the global South. Consequently, adopting AI in recruiting, retaining, and managing a diverse workforce demands a critical examination of the colonial/apartheid past, integrating contemporary realities to explore the potential infusion of contextually relevant AI innovations in managing South Africa’s workforce.
This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
Artificial intelligence chatbots can be used to conduct research effectively and efficiently in the fifth industrial revolution. Artificial intelligence chatbots are software applications that utilize artificial intelligence technologies to assist researchers in various aspects of the research process. These chatbots are specifically designed to understand researchers’ inquiries, provide relevant information, and perform tasks related to data collection, analysis, literature review, collaboration, and more. The purpose of this study is to investigate the use of artificial intelligence chatbots for conducting research in the fifth industrial revolution. This qualitative study adopts content analysis as its research methodology, which is grounded in literature review incorporating insights from the researchers’ experiences with utilizing artificial intelligence. The findings reveal that researchers can use artificial intelligence chatbots to produce quality research. Researchers are exposed to various types of artificial intelligence chatbots that can be used to conduct research. Examples are information chatbots, question and answer chatbots, survey chatbots, conversational agents, peer review chatbots, personalised learning chatbots and language translation chatbots. Artificial intelligence chatbots can be used to perform functions such as literature review, data collection, writing assistance and peer review assistance. However, artificial intelligence chatbots can be biased, lack data privacy and security, limited in creativity and critical thinking. Researchers must be transparent and take in consideration issues of informed content and data privacy and security when using artificial intelligence chatbots. The study recommends a framework on artificial intelligence chatbots researchers can use to conduct research in the fifth industrial revolution.
The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
Copyright © by EnPress Publisher. All rights reserved.