The Sipongi System is essential in dealing with forest and land fires because this system provides real-time data that empowers stakeholders and communities to proactively overcome fire dangers. Its advantages are seen in its ability to provide detailed information regarding weather conditions, wind patterns, water levels in peatlands, air quality, and responsible work units. This data facilitates efficient decision-making and resource allocation for fire prevention and control. As an embodiment of Collaborative Governance, the Sipongi System actively involves various stakeholders, including government institutions, local communities, environmental organizations and the private sector. This cooperative approach fosters collective responsibility and accountability, improving fire management efforts. The Sipongi approach is critical in reducing forest and land fires in Indonesia by providing real-time data and a collaborative governance model. This results in faster response times, more effective fire prevention and better resource allocation. Although initially designed for Indonesia, the adaptable nature of the system makes it a blueprint for addressing similar challenges in other countries and regions, tailored to specific needs and environmental conditions. Qualitative research methods underlie this study, including interviews with key stakeholders and analysis of credible sources. Government officials, community leaders, environmental experts and organizational representatives were interviewed to comprehensively examine the mechanisms of the Sipongi System and its impact on forest and land fire management in Indonesia. Future research should explore the application of Sipongi Systems and collaborative governance in various contexts by conducting comparative studies across countries and ecosystems. Additionally, assessing the long-term impact and sustainability of the Sipongi System is critical to evaluating its effectiveness over time.
This study provides an empirical examination of the design and modification of China’s urban social security programme. In doing so, this study complements the popular assumption regarding the correlation between economic growth and social security development. Focusing on the economic and political motivations behind the ruling party’s decision to implement social security, this study first discusses the modification of urban social security and welfare in China. It then empirically demonstrates the mechanisms behind the system’s operation. This study proposes the following hypothesis: in a country like China, a change in the doctrine of the ruling party will affect government alliances, negating the positive impact of economic growth on the development of social security. In demonstrating this hypothesis, this study identifies a political precondition impacting the explanatory power of popular conceptions of social security development.
This systematic literature review examines the convergence of entrepreneurship and information technology between 2005 and 2024. It investigates how the emergence of information technologies such as social networks, smart devices, big data, and cloud computing have transformed business operations and entrepreneurial approaches. The study use technologies such as Bibliometrix to analyze academic literature and identify research trends, knowledge structures, and their evolutionary routes. During the specified time frame, a grand total of 292 articles were published by 777 writers. These publications have played a key role in redirecting academic focus from traditional entrepreneurship to the field of digital entrepreneurship and the applications of information technology. A thematic analysis uncovers a shift from theoretical investigation to practical implementations and multidisciplinary research, while a co-citation analysis highlights important contributors and influential works. This study emphasizes the crucial importance of information technology in influencing entrepreneurial behaviors and strategic business decisions. It also offers valuable insights for future research and entrepreneurial practice in the information age.
Healthcare mobile applications satisfy different aims by frequently exploiting the built-in features found in smart devices. The accessibility of cloud computing upgrades the extra room, whereby substances can be stored on external servers and obtained directly from mobile devices. In this study, we use cloud computing in the mobile healthcare model to reduce the waste of time in crisis healthcare once an accident occurs and the patient operates the application. Then, the mobile application determines the patient’s location and allows him to book the closest medical center or expert in some crisis cases. Once the patient makes a reservation, he will request help from the medical center. This process includes pre-registering a patient online at a medical center to save time on patient registration. The E-Health model allows patients to review their data and the experiences of each specialist or medical center, book appointments, and seek medical advice.
The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors.
The structure, thermodynamic stability, ionization potential (IP) and electron affinity (EA) energy level difference (Eg) and tension of lowest unoccupied orbit (LUMO) and highest occupied orbit (HOMO) of armchair single wall carbon nanotubes (C-NTs), BN hybrid carbon nanotubes (BC2N-NTs) and all BN nanotubes (BN-NTs) were systematically studied with AM1 method in this paper. Calculation results show that when n value is constant, (n, n) C-NTs (n = 3,4,5,6) has the largest diameter and BN-NTs has the smallest diameter; (n, n) the values of Eg (HOMO-LUMO) and n of C-NTs and BC2N-NTs are related; POAV analysis shows that different hybrid atoms have different contributions to the hybrid mode of nanotube atoms and the tension of nanotubes.
Copyright © by EnPress Publisher. All rights reserved.