This study will explore the direct and indirect impacts of collaborative governance innovation on organizational value creation in higher vocational education in China in the context of the digital era. This paper employs a mixed research methodology to construct and validate a model of the relationship between collaborative governance, digital competence, value chain restructuring, and value creation. This study first adopted an exploratory sequential design. In the qualitative interviews, 15 experts from education, business, and other related fields were used as respondents to explore accurate variable factors and determine the value of the research framework. The quantitative research used structural equation analysis to analyze 979 valid online questionnaires. Finally, the rationality of the research results was verified through case studies. The findings are clear: collaborative governance significantly positively impacts value creation, indirectly affecting organizational value creation through value chain restructuring. Furthermore, digital capabilities significantly contribute to the value chain restructuring process. This paper provides a theoretical basis and practical guidance for higher vocational education organizations to improve their governance and innovation capabilities.
Artificial Intelligence (AI) in education has both positive and negative impacts, particularly in term of increasing plagiarism. This research analyzes Indonesia’s plagiarism regulations and offers solutions. It uses doctrinal methods with legislative, case, and comparative studies, revealing that plagiarism is regulated but not specifically for AI involvement. The results show that plagiarism in scientific work has actually been regulated through several regulations. On the other hand, there is no regulation governing the involvement of AI in the process of preparing scientific articles. Comparative studies show that the US, Singapore, and the EU have advanced regulations for AI in education. The US has copyright laws for AI works and state regulations, Singapore’s Ministry of Education has guidelines for AI integration and ethics, and the EU has the Artificial Intelligence Act. To tackle AI-related plagiarism in Indonesia, the study suggests enacting AI-specific laws and revising existing ones. Ministerial and Rector statutes should address technical aspects of AI use and plagiarism checks. The Ministry should issue guidelines for universities to develop Standard Procedures for Writing and Checking Scientific Work, using reliable AI-checking software. These measures aim to prevent plagiarism in Indonesia’s educational sector.
Interconnected components of holistic development, such as being thankful, addressing basic psychological needs, and acting effectively toward others, should be a priority for college athletes. Athletes at the College level need all-encompassing support systems to ensure their health, happiness, and success because of the special difficulties they have juggling their academic, athletic, and personal schedules. Problems with work-life balance, stress, and performance expectations all impede College Student Athletes’ holistic development. A thorough plan that considers all of the social, emotional, and psychological aspects impacting athlete development is necessary to overcome these obstacles. An Integrated Holistic Development Program for College Athletes (IHDP-CA) is suggested in this paper as a method that incorporates various aspects of positive psychology, mindfulness, resilience training, and the enhancement of interpersonal skills. Athletes at the College level can benefit from this all-encompassing program’s emphasis on helping others, developing an attitude of gratitude, and meeting basic psychological requirements. Sports counseling services, schools, and College athletic teams can all benefit from the IHDP-CA. A more positive and supportive sporting environment can be achieved when the program takes a more holistic approach to athletes’ needs, improving their mental health, social connections, and overall performance. The possible effect of the IHDP-CA on the holistic development outcomes of College Student-Athletes will be predicted through simulation analysis. To gain a better understanding of the program’s long-term viability, efficacy, and scalability, this analysis will run simulations of different situations and tweak program settings.
The objective of this paper is to analyze the impact of infrastructure financing on economic growth in emerging markets through the application of both quantitative and qualitative research methodologies. In this study, the research will employ both primary and secondary data to investigate the impact of different structures of infrastructure financing on the performance of the economy through interviews with the stakeholders and policy documents alongside quantitative data from the World Bank and the IMF. The quantitative analysis employs the econometric models to establish the effect of infrastructure investment on the GDP growth of the selected countries, India, China, Brazil, and Nigeria. Additional secondary qualitative data obtained from interviews with policymakers and financial specialists from Brazil, India, and South Africa offer more practical information regarding the efficiency of the discussed financing approaches. This paper is therefore able to conclude that appropriate management of infrastructure investments, particularly those that involve the PPP, are central to the development of the economy. However, certain drawbacks such as the lack of regularity of data and the disparity in the effectiveness of financing instruments by the regions are pointed out. The research provides policy implications to policymakers and investors who wish to finance infrastructure in the emerging economy to enhance economic growth in the long run.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
While the notion of the smart city has grown in popularity, the backlash against smart urban infrastructure in the context of changing state-public relations has seldom been examined. This article draws on the case of Hong Kong’s smart lampposts to analyse the emergence of networked dissent against smart urban infrastructure during a period of unrest. Deriving insights from critical data studies, dissentworks theory, and relevant work on networked activism, the article illustrates how a smart urban infrastructure was turned into both a source and a target of popular dissent through digital mediation and politicisation. Drawing on an interpretive analysis of qualitative data collected from multiple digital platforms, the analysis explicates the citizen curation of socio-technic counter-imaginaries that constituted a consent of dissent in the digital realm, and the creation and diffusion of networked action repertoires in response to a changing political opportunity structure. In addition to explicating the words and deeds employed in this networked dissent, this article also discusses the technopolitical repercussions of this dissent for the city’s later attempts at data-based urban governance, which have unfolded at the intersections of urban techno-politics and local contentious politics. Moving beyond the common focus on neoliberal governmentality and its limits, this article reveals the underexplored pitfalls of smart urban infrastructure vis-à-vis the shifting socio-political landscape of Hong Kong, particularly in the digital age.
Copyright © by EnPress Publisher. All rights reserved.