An appraisal of the groundwater potential of Alex Ekwueme Federal University Ndufu Alike was carried out by integrating datasets from geology, geographic information system and electrical resistivity survey of the area. The study area is underlain by the Asu River group of Albian age. The Asu River Group in the Southern Benue Trough comprises of Shales, Limestones and Sandstone lenses of the Abakaliki Formation in Abakaliki and Ikwo areas. The shales are generally weathered, fissile, thinly laminated and highly fractured and varies between greyish brown to pinkish red in colour. Twenty (20) Vertical Electrical Sounding data were acquired using SAS 1000 ABEM Terrameter and processed to obtain layer parameters for the study area. A maximum current electrode spacing (AB) of 300 meters was used for data acquisition. Computer aided iterative modelling using IPI2 Win was used to determine layer parameters. In-situ Hydraulic Conductivity measurements at seven parametric locations within the study area were conducted and integrated with Electrical Resistivity measurements to determine aquifer parameters (e.g., Hydraulic conductivity and Transmissivity) in real time. This technique reduces the attendant huge costs associated with pumping tests and timelines required to carry out the technique. Accurate delineation of aquifer parameters and geometries will aid water resource planners and developers on favourable areas to site boreholes in the area. Several correlative cross-sections were generated from the interpreted results and used to assess the groundwater potential of the study area. Results show that the resistivity of the the aquifer ranges from 7.3 Wm–530 Wm while depth to water ranges from 11.4 m to 55.3 m. Aquifer thicknesses range from 8.7 m at VES 5 to 36.3 m at VES 6 locations. Hydraulic conductivity ranges from 1.55 m/day at VES 15.18, and 19 locations to 9.8 m/day at VES 3 and 4 locations respectively. Transmissivity varies from 17.48 m2/day at VES 19 to 98 m2/day at VES 3 locations respectively. Areas with relatively high transmissivities coupled with good aquifer thicknesses should be the target of water resource planners and developers when proposing sites for drilling productive boreholes within Alex Ekwueme federal University Ndufu Alike.
Given the eclectic and localized nature of environmental risks, planning for sustainability requires solutions that integrate local knowledge and systems while acknowledging the need for continuous re-evaluation. Social-ecological complexity, increasing climate volatility and uncertainty, and rapid technological innovation underscore the need for flexible and adaptive planning. Thus, rules should not be universally applied but should instead be place-based and adaptive. To demonstrate these key concepts, we present a case study of water planning in Texas, whose rapid growth and extreme weather make it a bellwether example. We review historic use and compare the 2002, 2007, 2012, 2017 and 2022 Texas State Water Plans to examine how planning outcomes evolve across time and space. Though imperfect, water planning in Texas is a concrete example of place-based and adaptive sustainability. Urban regions throughout the state exhibit a diversity of strategies that, through the repeated 5-year cycles, are ever responding to evolving trends and emerging technologies. Regional planning institutions play a crucial role, constituting an important soft infrastructure that links state capacity and processes with local agents. As opposed to “top-down” or “bottom-up”, we frame this governance as “middle-out” and discuss how such a structure might extend beyond the water sector.
Transportation projects are crucial for the overall success of major urban, metropolitan, regional, and national development according to their capacity by bringing significant changes in socio-economic and territorial aspects. In this context, sustaining and developing economic and social activities depend on having sufficient Water Resources Management. This research helps to manage transport project planning and construction phases to analyze the surface water flow, high-level streams, and wetland sites for the development of transportation infrastructure planning, implementation, maintenance, monitoring, and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. A case study was carried out using the Arc Hydro extension within ArcGIS for processing and presenting the spatially referenced Stream Model. Geographical information systems have the potential to improve water resource planning and management. The study framework would be useful for solving water resource problems by enabling decision makers to collect qualitative data more effectively and gather it into the water management process through a systematic framework.
Copyright © by EnPress Publisher. All rights reserved.