The present study aims at analyzing the various factors influencing consumer attitudes towards the adoption of electric vehicles (EVs) in Saudi Arabia. The study evaluates consumer attitudes, their impact on shaping behaviours, and whether consumer intention mediates the relationship between consumer attitude and purchase behaviour towards EVs. This research employs a mixed-method approach, including literature review, surveys, and data analysis. It investigates EV adoption dimensions encompassing individual, social, economic, and environmental factors. Data collected from 397 current and potential EV owners in Saudi Arabia provide insights into their attitudes and behaviours. Survey findings indicate that in Saudi Arabia, safety rating, social influence, economic value, operating cost, and product variety significantly shape consumer attitudes and influence EV adoption. However, factors like range anxiety, charging infrastructure, environmental concern, and performance expectancy are less significant in affecting consumer attitudes toward EVs and their adoption. Investigating multiple dimensions and employing a mixed-method approach, the study enhances the existing knowledge of consumer attitudes toward EVs in the unique context of Saudi Arabia’s sustainable mobility transition. Policymakers and industry stakeholders can utilize these findings to expedite the shift to sustainable transportation in the Kingdom. This research also guides future investigations in this burgeoning field.
Static atomic charges affect key ground-state parameters of quasi-planar boron clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small planar boron clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
The food supply chain in South Africa faces significant challenges related to transparency, traceability, and consumer trust. As concerns about food safety, quality, and sustainability grow, there is an increasing need for innovative solutions to address these issues. Blockchain technology has emerged as a promising tool to enhance transparency and accountability across various industries, including the food sector. This study sought to explore the potential of blockchain technology in revolutionizing through promoting transparency that enable the achievement of sustainable food supply chain infrastructure in South Africa. The study found that blockchain technology used in food supply chain creates an immutable and decentralized ledger of transactions that has the capacity to provide real-time, end-to-end visibility of food products from farm to table. This increased transparency can help mitigate risks associated with food fraud, contamination, and inefficiencies in the supply chain. The study found that blockchain technology can be leveraged to enhance supply chain efficiency and trust among stakeholders. This technology used and/or applied in South Africa can reshape the agricultural sector by improving production and distribution processes. Its integration in the food supply chain infrastructure can equally improve data management and increase transparency between farmers and food suppliers.There is need for policy-makers and scholars in the fields of service delivery and food security to conduct more research in blockchain technology and its roles in creating a more transparent, efficient, and trustworthy food supply chain infractructure that address food supply problems in South Africa. The paper adopted a qualitative methodology to collect data, and document and content analysis techniques were used to interpret collected data.
This work investigated the photocatalytic properties of polymorphic nanostructures based on silica (SiO2) and magnetite (Fe3O4) for the photodegradation of tartrazine yellow dye. In this sense, a fast, easy, and cheap synthesis route was proposed that used sugarcane bagasse biomass as a precursor material for silica. The Fourier transform infrared (FTIR) spectroscopy results showed a decrease in organic content due to the chemical treatment with NaOH solution. This was confirmed through the changes promoted in the bonds of chromophores belonging to lignin, cellulose, and hemicellulose. This treated biomass was calcined at 800 ℃, and FTIR and X-ray diffraction (XRD) also confirmed the biomass ash profile. The FTIR spectrum showed the formation of silica through stretching of the chemical bonds of the silicate group (Si-O-Si), which was confirmed by DXR with the predominance of peaks associated with the quartz phase. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) confirmed the morphological and chemical changes due to the chemical and thermal treatments applied to this biomass. Using the coprecipitation method, we synthesized Fe3O4 nanoparticles (Np) in the presence of SiO2, generating the material Fe3O4/SiO2-Np. The result was the formation of nanostructures with cubic, spherical, and octahedral geometries with a size of 200 nm. The SEM images showed that the few heterojunctions formed in the mixed material increased the photocatalytic efficiency of the photodegradation of tartrazine yellow dye by more than two times. The degradation percentage reached 45% in 120 min of reaction time. This mixed material can effectively decontaminate effluents composed of organic pollutants containing azo groups.
This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
In order to address severe siltation and enhance urban green spaces in Xianyang Lake, the research offers a sustainable solution by proposing an innovative integration of ecological dredging and landscape transformation. The key findings are as follows: Firstly, an ecological dredging mechanism was established by directly transporting sediment from Xianyang Lake to its central greenbelt, reducing dredging costs and environmental impact while creating a sustainable funding cycle through revenue from eco-tourism activities. Secondly, the landscape artistic conception of the central greenbelt was significantly improved by leveraging the natural distance between the lakeshore and the greenbelt, offering diverse viewing experiences and enhancing the cognitive abilities and urban life satisfaction of tourists. Thirdly, the project demonstrated substantial economic and social benefits, including revenue generation from paid activities like boat tours, increased public awareness of biodiversity through ecological education, and improved community well-being. The central greenbelt also enhanced the urban environment by improving air quality, mitigating the “heat island effect,” and providing habitats for wildlife. This integrated approach serves as a model for sustainable urban development, offering valuable insights for cities facing similar ecological challenges. Future research should focus on long-term monitoring to further evaluate the ecological and socio-economic impacts of such projects.
Copyright © by EnPress Publisher. All rights reserved.