This paper uses Public Choice analysis to examine the case for and experience with Public-Private Partnerships (PPPs). A PPP is a contractual platform which connects a governmental body and a private entity. The goal is to provide a public sector program, service, or asset that would normally be provided exclusively by a public sector entity. This paper focuses on PPPs in developed countries, but it also draws on studies of PPPs in developing countries. The economics literature generally defines PPPs as long-term contractual arrangements between a public authority (local or central government) and a private supplier for the delivery of services. The private sector supplier takes responsibility for building infrastructure components, securing financing of the investment, and then managing and maintaining this facility.
However, in addition to those formed through contracts, PPPs may take other forms such as those developed in response to tax subvention or coercion, as in the case of regulatory mandates. A key element of PPP is that the private partner takes on a significant portion of the risk through a schedule of specified remuneration, contingency payments, and provision for dispute resolution. PPPs typically are long-term arrangements and involve large corporations on the private side, but may also be limited to specific phases of a project.
The types of PPPs discussed in this paper exclude arrangements which may result from government mandates such as the statutory emission mandates imposed on automobile manufacturers and industrial facilities (e.g., power plants). It also excludes PPP-like organizations resulting from US section 501(c)(3) of the Internal Revenue Code, which provides tax subsidies for certain public charities, scientific research organizations, and organizations whose goals are to prevent cruelty to animals or erect public monuments at no expense to the government. This paper concludes that an array of Public Choice tools are applicable to understanding the emergence, success, or failure of PPPs. Several short case studies are provided to illustrate the practicalities of PPPs.
Fire is one of the most serious hazards, which causes many economic, social, ecological, and human damages every year in the world. Fire in forests and natural ecosystems destroys wood, regeneration, forest vegetation, as well as soil erosion and forest regeneration problems (due to the dryness of the weather and the weakness of the soil). Awareness of the extent of the zones that have been fired is important for forest management. On the other hand, the difficulty of fieldwork due to the high cost and inaccessible roads, etc. reveals the need for using remote sensing science to solve this problem. In this research, MODIS satellite images were used to detect and determine the fire extent of Golestan province forests in northern Iran. MID13q1 and MOD13q1 images were used to detect the normal conditions of the environment. The 15-year time series data were provided for the NDVI and NDMI indicators in 2000-2015. Then, the behavior of indicators in the fire zone was studied on the day after the fire. The burned zones by the fire were specified by determining the appropriate threshold and then, they were compared to long-term normals. In the NDMI and NDVI indicators, the mean of the numeric value threshold limit for determining the burnt pixels was respectively 1.865 and 0.743 of the reduction in their normal long-term period, which are selected as fire pixels. The results showed that the NDMI index could determine the extent of the burned zone with the accuracy of 95.15%.
Attempts were made in the present study to design and develop skeletally modified ether linked tetraglycidyl epoxy resin (TGBAPSB), which is subsequently reinforced with different weight percentages of amine functionalized mullite fiber (F-MF). The F-MF was synthesized by reacting mullite fiber with 3-aminopropyltriethoxysilane (APTES) as coupling agent and the F-MF structure was confirmed by FT-IR. TGBAPSB reinforced with F-MF formulation was cured with 4,4’-diamino diphenyl methane (DDM) to obtain nanocomposite. The surface morphology of TGBAPSB-F-MF epoxy nanocomposites was investigated by XRD, SEM and AFM studies. From the study, it follows that these nanocomposite materials offer enhancement in mechanical, thermal, thermo-mechanical, dielectric properties compared to neat (TGBAPSB) epoxy matrix. Hence we recommend these nanocomposites for a possible use in advanced engineering applications that require both toughness and stiffness.
The properties of the beta batteries are compared, which are made on the basis of the different β-isotopes with beta decay. Tritium and Ni-63 make it possible to make β-sources of high activity, without harmful associated emissions, with low self-absorption, emitting high-energy β-electrons that penetrate deep into the semiconductor and generate a large number of electron-hole pairs. The efficiency of beta batteries needs to be analyzed based on the real energy distribution of β-electrons. It makes possible to obtain the real value of the energy absorbed inside the β-source, correctly estimate the amount of self-absorption of the β-electrons and part of the β-electronsthere is a penetrate into the semiconductor, the number of electrons and holes that are generated in the semiconductor, and the magnitude of the idling voltage. Formulas for these quantities are calculated in this paper.
With the development of social economy, the current urban traffic problem is more prominent. In order to solve this problem very well, the idea of establishing intelligent traffic management came into being. The establishment of intelligent traffic management, cannot do without the signal launch and reception. Therefore, how to set up some wireless signal transmitting device in time to travel on the road motor vehicles to send traffic information and how to achieve full coverage of the signal and signal stability is our article to discuss the issue. For the first question, we must separate the motorway and non-motorway from all roads. Motorway lanes are usually straight and long. While the bends are usually just sidewalks or bike lanes (non-motorized lanes). So the 121 road can be clustered analysis, clustering of the two indicators for each road length (the distance between the adjacent points) and the collection point of density (by drawing, you can observe the more curved the denser the road collection point, so the road curvature into the collection point of the intensity), the result of clustering can get 48 motor lanes. And then through regress function regression and data fitting to achieve an approximate description of each type of motor vehicle description model, so that each road in a given latitude (latitude) coordinates to determine the latitude (longitude) coordinates and the corresponding altitude. For the problem of two, according to the meaning of the road to know the signal strength is only related to the distance between the sampling point and the launch device, so you can 'the motor vehicle between the signal reception is relatively close to' this indicator into ' The average of the distance between all the sampling points and the transmitting device is close to '. By reading the data will be latitude and longitude conversion distance length, so that the maximum value as small as possible. The position of the launcher can be obtained by programming by MATLAB. When considering the altitude, only the position of the transmitting device can be changed. (9.7824,56.7720), and the position coordinates when considering the altitude are D (9.7459, 56.7586, 73.5645), and the position coordinate of the signal device is B (9.7824, 56.7720). For question three, note the effect of the original signal device A on the result. We still use the average of the distance between all the sampling points of the road and the launcher to characterize the stability of the signal reception. The average distance of all non-motorized trains to the original signal device A is first determined, and then the average distance of all non-motorized lanes from the new signal device B is set, and the signal acceptance strength of the non-motorized lane can be used to characterize. And then use the same method in question two to determine the location of the new signal transmitter. Finally, the coordinates of the position of the new signal device are E (9.7459,56.7586,73.5645).
With the improvement of people's living standards, water heaters almost into the various households. In the energy-saving emission reduction has become the trend of the times today, saving energy and reducing carbon emissions is the most fashionable way of life. Air source heat pump water heaters are increasingly being used in people's lives. It is well known that it has many advantages, safety, energy saving, comfort, environmental protection, but there are some factors that affect its development and promotion. This paper mainly discusses the development history of air source heat pump technology at home and abroad, working principle, working flow, turbo technology at present stage, efficient heat exchange, and the research status of air source heat pump technology, such as new type refrigerant and dual frequency compression frequency conversion, then it discusses the application of air source heat pump technology, has the advantage, and finally discusses its application and the existence of two major problems and suggestions for improvement.
Copyright © by EnPress Publisher. All rights reserved.