The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
Bangladesh’s coastal regions are rich in saline water resources. The majority of these resources are still not being used to their full potential. In the southern Bangladeshi region of Patuakhali, research was conducted to investigate the effects of mulching and drip irrigation on tomato yield, quality, and blossom-end rot (BER) at different soil salinity thresholds. There were four distinct treatments applied: T1= drip irrigation with polythene mulch, T2 = drip irrigation with straw mulch, T3 = drip irrigation without mulch, and T4 = standard procedure. While soil salinity was much greater in treatment T3 (1.19–8.42 dS/m) fallowed by T4 (1.23–8.63 dS/m), T1 treatments had the lowest level of salinity and the highest moisture retention during every development stage of the crops, ranging from 1.28–4.29 dS/m. Treatment T3 exhibited the highest soil salinity levels (ranging from 1.19 to 8.42 dS/m), followed by T4 with a range of 1.23 to 8.63 dS/m. In contrast, T1 treatments consistently maintained the lowest salinity levels (ranging from 1.28 to 4.29 dS/m) and the highest moisture retention throughout all stages of crop development. In terms of yield, drip irrigation with no mulch treatment (T3) provided the lowest output (13.37 t/ha), whereas polyethylene mulching treatment (T1) produced the maximum yield (46.04 t/ha). According to the study, conserving moisture in tomato fields and reducing soil salinity may both be achieved with drip irrigation combined with polythene mulch. The research suggests that employing drip irrigation in conjunction with polythene mulch could effectively preserve moisture in tomato fields and concurrently decrease soil salinity.
Tomato powdery mildew, fruit rot, and twig blight are all managed with Deltamethrin. Its residues could still be present in the crops, posing a health risk. The pesticide residue analysis, dissipation rate, and safety assessments were thus examined in green tomatoes. The analytical method for residue analysis was validated according to international standards. Tomato fruits and soil were used to study the dissipation of Deltamethrin 100 EC (11% w/w) at 12.5 g a.i ha−1 for the recommended dose (RD) and 25.0 g a.i ha−1 for the double of the recommended dose (DD). Ethyl acetate was used to extract residues from tomato fruit, and PSA and magnesium sulphate were used for cleanup.The fruits had recoveries ranging from 83% to 93% and the soil sample from 81.67% to 89.6%, with the limit of detection (LOQ) estimated at 0.01 mg kg−1. The matrix effect (ME) was calculated to be less than 20% for the tomato fruits and the soil.Half-lives for RD and DD were 1.95 and 1.84 days, respectively. All sampling days for both doses had dietary exposures of residues below the maximum permissible intake (MPI) of 0.16 mg person−1 day−1. The most effective method of decontaminating tomato residue containing Deltamethrin is blanching.
The coconut industry has deep historical and economic importance in Sri Lanka, but coconut palms are vulnerable to water stress exacerbated by environmental challenges. This study explored using Sunn hemp (Crotalaria juncea L.) in major coconut-growing soils in Sri Lanka to improve resilience to water stress. The study was conducted at the Coconut Research Institute of Sri Lanka to evaluate the growth of Sunn hemp in prominent coconut soils—gravel, loamy, and sandy—to determine its cover crop potential. Sunn hemp was planted in pots with the three soil types, arranged in a randomized, complete design with 48 replicates. Growth parameters like plant height, shoot/root dry weight, root length, and leaf area were measured at 2, 4, 6, and 8 weeks after planting. Soil type significantly impacted all growth parameters. After 8 weeks, sandy soil showed the highest plant height and root length, while loamy soil showed the highest shoot/root dry weight and leaf area, followed by sandy and gravel soils. Nitrogen content at 6 and 8 weeks was highest in loamy soil plants. In summary, Sunn hemp produces more biomass in sandy soils, while loamy soils promote greater nutrient accumulation and growth. This suggests the suitability of Sunn hemp as a cover crop across major coconut-growing soils in Sri Lanka, improving resilience.
Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
Herein, we report a facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked polyacrylamide (PAM) hydrogels for enhanced water absorption and controlled water release aimed at desert agriculture. To prepare the sample, 4 wt% of aqueous PAM solution is mixed with organic cross-linkers of hydroquinone (HQ) and hexamethylenetetramine (HMT) in a 1:1 weight ratio and aqueous potassium chloride (KCl) solution. A specific amount of the above solution is added to the sand, well mixed, and subsequently cured at 150 °C for 8 h. The prepared super-hydrophilic sands were characterized by Fourier-transform infrared spectroscopy (FT-IR) for chemical composition and X-ray diffraction (XRD) for successful polymer coating onto the sand. The water storage for the samples was studied by absorption kinetics at various temperature conditions, and extended water release was studied by water desorption kinetics. The water swelling ratio for the super-hydrophilic sand has reached a maximum of 900% (9 times its weight) at 80 °C within 1 h. The desorption kinetics of the samples showed that the water can be stored for up to a maximum of 3 days. Therefore, super-hydrophilic sand particles were successfully prepared by coating them with PAM hydrogels, which have great potential to be used in sustainable desert agriculture.
Copyright © by EnPress Publisher. All rights reserved.