The purpose of this study was to investigate the published literature on human resource management and school performance from January 2012 to December 2022. Numerous literature evaluations have been conducted on human resource management and organizational performance, but school or teacher performance has received less attention than organizational performance. The PICOC (population, intervention, comparison, outcome, and context) technique is integrated into each stage of the PSALSAR framework to assure the study’s objective and comparability. This in-depth research is conducted in three stages: identifying pertinent keywords, screening pertinent papers, and selecting pertinent publications for review utilizing the PRISMA (Preferred Reporting Items for Systematic Reviews and Mata Analysis) technique. This made a final database with 44 publications that met the study’s requirements for inclusion. This study reveals that HRM practices and school performance are correlated. The results of the research identify the eight most essential HRM practices for improving school performance, which included planning, organizing, recruitment and selection, training and development, performance management, employee relations and involvement, reward and compensation, health, safety, and work-life balance. Leadership style, motivation, satisfaction, productivity and task performance, competency, culture and climate, empowerment, and commitment were among the performance-influencing elements.
We report on the measurement of the response of Rhodamine 6G (R6G) dye to enhanced local surface plasmon resonance (LSPR) using a plasmonic-active nanostructured thin gold film (PANTF) sensor. This sensor features an active area of approximately ≈ 2.5 × 1013 nm2 and is immobilized with gold nanourchins (GNU) on a thin gold film substrate (TGFS). The hexane-functionalized TGFS was immobilized with a 90 nm diameter GNU via the strong sulfhydryl group (SH) thiol bond and excited by a 637 nm Raman probe. To collect both Raman and SERS spectra, 10 μL of R6G was used at concentrations of 1 μM (6 × 1012 molecules) and 10 mM (600 × 1014 molecules), respectively. FT-NIR showed a higher reflectivity of PANTF than TGFS. SERS was performed three times at three different laser powers for TGFS and PANTF with R6G. Two PANTF substrates were prepared at different GNU incubation times of 10 and 60 min for the purpose of comparison. The code for processing the data was written in Python. The data was filtered using the filtfilt filter from scipy.signals, and baseline corrected using the Improved Asymmetric Least Squares (ISALS) function from the pybaselines.Whittaker library. The results were then normalized using the minmax_scale function from sklearn.preprocessing. Atomic force microscopy (AFM) was used to capture the topography of the substrates. Signals exhibited a stochastic fluctuation in intensity and shape. An average corresponding enhancement factor (EF) of 0.3 × 105 and 0.14 × 105 was determinedforPANTFincubated at 10 and 60 min, respectively.
Copyright © by EnPress Publisher. All rights reserved.