The search for the development of nanostructured materials has led to the study of the properties of their precursors. For the production of nanofibers by the electrospinning process, it is necessary to determine the rheological parameters of the precursor solutions. Since these properties can be influenced by the processing variables and chemical composition of the polymer, this study aims to elucidate the effect of the addition of vinyl monomers in the formulation of nanofibers based on polyacrylonitrile and to determine the optimal parameters for the production of the precursor polymer solution. The effects of temperature and addition of vinyl monomers were evaluated by rheometry, from the analysis of the variation of the viscosity of the solutions, and by microscopy, the morphology of the nanofibers produced. It was observed that the increase in the temperature used to produce the solutions improves the fibers’ properties. Still, there is a relationship between the time of exposure of the polymeric solution to the temperature and the homogeneity of the fibers, which cannot exceed 45 min. The addition of vinyl monomers, to produce PAN-PVA co-polymeric fibers, increases the conductivity and reduces the viscosity of the solutions, resulting in more refined and homogeneous fibers.
Plum (Prunus domestica) is a seasonal nutraceutical fruit rich in many functional food nutrients such as vitamin C, antioxidants, total phenolic content, and minerals. Recently, researchers have focused on improvised technologies for the retention of bioactive compounds during the processing of perishable fruits; plum is one of these fruits. This study looked at how the percentage of moisture content and percentage of acidity were affected by conventional drying and osmotic dehydration. Total phenolic content (mg GA/100 g of plum), total anthocyanin content (mg/100 g), and vitamin C (mg/100 g) Conventional drying of fruit was carried out at 80.0 ℃ for 5 h. At various temperatures (45.0 ℃, 50.0 ℃, and 55.0 ℃) and hypertonic solution concentrations (65.0 B, 70.0 B, and 75.0 B), the whole fruit was osmotically dehydrated. It was observed that the osmotically treated fruit retains more nutrients than conventionally dried fruit. The total phenolic content of fruit significantly increased with the increase in process temperature. However, vitamin C and total anthocyanin content of the fruit decreased significantly with process temperature, and hypertonic solution concentration was observed. Hence, it was concluded that osmodehydration could be employed for nutrient retention in plum fruit over conventional drying. This process needs to be further refined, improvised, and optimised for plum processing.
Regarding to the influence of chloride and fluoride ions on the corrosion resistance, the electrochemical behavior of Ti alloys has been deeply studied. In this work, the main goal was to investigate the electrochemical behavior of cp-Ti and Ti-Mo alloys containing 6, 10 and 15 wt% of Mo concentrations. All the samples were immersed in different solutions, such as 0.15 mol L-1 Na2SO4, 0.15 mol L-1 Ringer, 0.15 mol L-1 Ringer plus 0.036 mol L-1 NaF and 0.036 mol L-1 NaF. Simulating the commercial fluorinated gels, the NaF solutions naturally-aerated were prepared with 1450 ppm of fluoride ions. The electrochemical techniques applied in this work were the open-circuit potential, cyclic voltammetry, besides the technique for chemical identification, which was X-ray photoelectron spectroscopy. The formation and growth of TiO2 and MoO2 were identified, without pitting corrosion. The electrochemical stability and the corrosion resistance of the Ti-Mo alloys decreased in the solutions containing chloride and fluoride ions, with an appreciative decrease especially in the fluorinated medium. The Ti-Mo alloy with higher Mo content concentration was the material with higher corrosion resistance. Therefore, it is a promising candidate as a biomaterial, once the osseointegration needs a satisfactory corrosion resistance for being achieved.
The growing of plants hydroponically is a soilless form of growing in modern day agriculture. It helps to make feed available for animals throughout the season since it is not affected by what is faced by field grown crops. The use of animal waste, that is, their faeces, in the growth of forage was compared with commercial hydroponics solutions as a way of looking for a reduction in the cost incurred in the purchase of commercial hydroponics solutions. The study evaluated the use of organic nutrient solutions (ONS) alongside a standard/commercial nutrient solution in growing crops hydroponically on the growth, dry matter yield, water use efficiency, and chemical composition of hydroponic maize fodder. The ONS used were formulated from the dried faeces of cattle, poultry, rabbits, and swine. The prepared organic nutrient solutions with the control were used in growing the maize seeds for 10 days, and growth, yield, and chemical composition were determined. Results show the highest (196 g) dry matter yield for maize hydroponic fodder irrigated with poultry ONS. Similarly, maize irrigated with poultry ONS was significantly (P < 0.05) higher in CP content, while it was not significantly different from maize irrigated with cattle, swine, and commercial solutions. A lower water use efficiency value (0.19 kg DM/m3) was recorded for maize irrigated with cattle ONS. According to the study, irrigating maize with different organic nutrient solutions produced maize fodder with a higher yield and a similar chemical composition as the commercial nutrient solution.
The work is devoted to the numerical solution of the initial boundary value problem for the heat equation with a fractional Riesz derivative. Explicit and implicit difference schemes are constructed that approximate the boundary value problem for the heat equation with a fractional Riesz derivative with respect to the coordinate. In the case of an explicit difference scheme, a condition is obtained for the time step at which the difference scheme converges. For an implicit difference scheme, a theorem on unconditional convergence is proved. An example of a numerical calculation using an implicit difference scheme is given. It has been established that when passing to a fractional derivative, the process of heat propagation slows down.
This work aimed to evaluate the effects of using three different substrates in the semi-hydroponic culture of lettuce (Lactuca sativa L.) using two different nutrient solutions. A first trial was performed with a nutrient solution rich in macronutrients and micronutrients suitable for lettuce culture, and a second trial with a nutrient solution with pretreated wastewater from effluents of a cheese factory. The experimental design was in randomized blocks with three repetitions and three substrates were used: perlite, coconut fiber, and expanded clay, in both trials. The following parameters were observed: number of leaves, diameter of the cabbage, fresh and dry weight of the aerial part, chlorophyll index and mineral composition of the lettuce. For the first trial, the highest result for the number of leaves (20 leaves), fresh weight (142.0 g) and dry weight (7.2 g) of the aerial part was obtained in the plants growing on perlite. In the second trial, the highest result for the number of leaves (28 leaves), diameter of cabbage (26.7 cm), fresh weight (118.8 g) and dry weight (9.5 g) of the aerial part were achieved by the plants that were grown in coconut fiber. The nutrient solutions were analyzed after each irrigation cycle to verify the possibility of their discharge into the environment. Several parameters were analyzed: pH, conductivity, redox potential, nitrates, nitrites, ammoniacal nitrogen, chlorides, hardness, calcium, phosphates, sodium, potassium, chemical oxygen demand (COD) and magnesium. Ammoniacal nitrogen was found to be the only nutrient that can limits the discharge of nutrient solutions into the environment. It was also proven that the plants, besides obtaining the nutrients necessary for their development in the semi-hydroponic system with the nutrient solution with pre-treated residual water, also functioned as a purification system, allowing the said nutrient solution to be discharged into the environment at the end of each cycle.
Copyright © by EnPress Publisher. All rights reserved.