Based on digital technology, the digital economy has typical characteristics of high efficiency, greenness, intelligence, innovation, strong penetration and so on, which can promote the sporting goods manufacturing industry (SGMI) to realize the goal of green development. This study selects panel data from 30 provinces in China over the period of 2011 to 2022. And the green total factor productivity of the sporting goods manufacturing industry (SGTFP) is used to reflect the green development of SGMI. The level of digital economy development (DIG) and the SGTFP are measured by using the entropy method and the Super-SBM model with undesirable outputs. Based on the method of coupling coordination degree model, the coordinated development degree of DIG and SGTFP is analyzed first. Then, by making use of the fixed effect model, intermediary effect model and spatial Durbin model, the influence of DIG on the green development of SGMI and its mechanism are empirically studied. The results show that DIG, SGTFP and the degree of their coupling and coordination are generally on the rise. The benchmark regression results show that the coefficient of DIG on SGTFP is 0.213; that is, the digital economy can significantly promote the improvement of green development in SGMI. According to the analysis of the spatial Durbin model, the impact of the digital economy on SGTFP has a certain spatial spillover, that is, the development of digital economy in the region will have a certain promoting effect on the green development of SGMI in the surrounding region. The intermediary effect model analyzes the influence mechanism and finds that the digital economy mainly boosts SGTFP through green innovation technology and energy consumption structure.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
This study employs logistic regression to investigate determinants influencing active living among elderly individuals, with “Active Living” (1 = Active, 0 = Inactive) as the dependent variable. Analysing data from 500 participants, findings reveal significant associations between active living and variables such as chronic conditions (OR = 0.29, p < 0.001), mental well-being (OR = 1.57, p < 0.001), social support (OR = 5.75, p < 0.001), access to parks/recreational facilities (OR = 2.59, p < 0.001), income levels (OR = 1.82, p = 0.003), cultural attitudes (OR = 2.72, p < 0.001), and self-efficacy (OR = 2.01, p < 0.001). These findings highlight the complex interplay of factors influencing active living among elderly populations. Recommendations include implementing targeted interventions to manage chronic conditions, enhance mental well-being, strengthen social networks, improve access to recreational spaces, provide economic support for fitness activities, promote positive cultural attitudes towards aging, and empower older adults through self-efficacy programs. Such interventions are crucial for promoting healthier aging and fostering sustained engagement in physical activity among older adults.
In recent years, the construction of Jiafeng (家风)has become an important research topic in the field of street-level governance. A systematic literature review method is used to review 504 journal articles sourced from China National Knowledge Infrastructure (CNKI). The research overview is presented from the perspectives of overall research characteristics, highly cited literature, theoretical foundations, and research methods. The research systematically elaborates on the results of literature analysis from the perspective of the connotation and extension of Jiafeng, the practical mechanisms and related suggestions for Jiafeng construction. The research has found that the practical mechanisms of Jiafeng construction includes institutional support mechanism, theoretical consolidation mechanism, collaborative mechanism, social education mechanism, application innovation mechanism, and efficiency evaluation mechanism. On the basis of constructing a framework for the study of Jiafeng, this article provides prospects for future research: consolidating the theoretical foundation of Jiafeng construction, defining the connotation and extension of Jiafeng, refining the practical mechanism of Jiafeng construction, enriching the research methods of Jiafeng and measuring tools for governance effectiveness.
This research article examines the relationship between the level of social welfare expenditure and economic growth rates, based on unbalanced panel data from 38 OECD countries covering the period from 1985 to 2022. Four hypotheses are formulated regarding the impact of social expenditure on economic growth rates. Through multiple iterations of regression model building, employing various combinations of dependent and independent variables, and conducting tests for stationarity and causality, compelling empirical evidence was obtained on the negative influence of social welfare spending on economic growth rates. The study takes into account both government and non-governmental expenditures on social welfare, a novelty in this field. This approach allows for a detailed examination of the effects of different components on economic growth and provides a more comprehensive understanding of the relationships. The findings indicate that countries with high levels of social welfare spending experience a slowdown in economic growth rates. This is associated with increasing demands on social security systems, their growing inclusivity, and the escalating required levels of financing, which are increasingly covered by debt sources. The research highlights the need to strike a balance between social expenditures and economic growth rates and proposes a set of measures to ensure economic growth outpaces the indexing of social expenditures. The abstract underscores the relevance of the study in light of the widespread recognition of the necessity to combat inequality, poverty, and destitution, and calls on OECD countries’ governments to pay increased attention to social policy in order to achieve sustainable and balanced economic growth.
Copyright © by EnPress Publisher. All rights reserved.