The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors.
The journey towards better healthcare sustainability in Asian nations demands a comprehensive investigation into the impact of urban governance, poverty, and female literacy on infant mortality rates. This study undertakes a rigorous exploration of these key factors to pave the way for evidence-based policy interventions, utilizing data from a panel of six selected Asian countries: Pakistan, China, India, Indonesia, Malaysia, and the Philippines, spanning the years 2001 to 2020. The findings reveal that adequate sanitation facilities, higher female literacy rates, and sustained economic growth contribute to a reduction in infant mortality. Conversely, increased poverty levels and limited women’s autonomy exacerbate the infant mortality rates observed in these countries. The Granger causality analysis validates the reciprocal relationship between urban sanitation (and poverty) and infant mortality rates. Furthermore, the study establishes a causal relationship where female literacy rates Granger-cause infant mortality rates, and conversely, infant mortality rates Granger-cause women’s autonomy in these countries. The variance decomposition analysis indicates that sustained economic growth, improved female literacy rates, and enhanced women’s empowerment will likely impact infant mortality rates in the coming decade. Consequently, in low-income regions where numerous children face potentially hazardous circumstances, it is imperative to allocate resources towards establishing and maintaining accessible fundamental knowledge regarding sanitation services, as this will aid in reducing infant mortality rates.
This study provides an evaluation of the environmental impact and economic benefits associated with the disposal of mango waste in Thailand, utilizing the methodologies of life cycle assessment (LCA) and cost-benefit analysis (CBA) in accordance with internationally recognized standards such as ISO 14046 and ISO 14067. The study aimed to assess the environmental impact of mango production in Thailand, with a specific focus on its contribution to global warming. This was achieved through the application of a life cycle assessment methodology, which enabled the determination of the cradle-to-grave environmental impact, including the estimation of the mango production’s global warming potential (GWP). Based on the findings of the feasibility analysis, mango production is identified as a novel opportunity for mango farmers and environmentally conscious consumers. This is due to the fact that the production of mangoes of the highest quality is associated with a carbon footprint and other environmental considerations. Based on the life cycle assessment conducted on conventional mangoes, taking into account greenhouse gas (GHG) emissions, it has been determined that the disposal of 1 kg of mango waste per 1 rai through landfilling results in an annual emission of 8.669 tons of carbon. This conclusion is based on comprehensive data collected throughout the entire life cycle of the mangoes. Based on the available data, it can be observed that the quantity of gas released through the landfilling process of mango waste exhibits an annual increase in the absence of any intervening measures. The cost benefit analysis conducted on the life cycle assessment (LCA) of traditional mango waste has demonstrated that the potential benefits derived from its utilization are numerous. The utilization of the life cycle assessment (LCA) methodology and the adoption of a sustainable business model exemplify the potential for developing novel eco-sustainable products derived from mango waste in forthcoming time.
The most crucial factor in producing papaya seedlings successfully is seed germination. The purpose of this study was to investigate the influence of seed priming with growing media on seed germination and seedling growth of papaya from October to December 2022. The experimental treatments included three seed priming treatments: T0 = control (no seed priming treatments), T1 = GA3 (100 ppm), and T2 = KNO3 (1%), and four growing media, viz., M1 = soil + vermicompost (1:1), M2 = soil + cowdung (1:1), M3 = soil + cocopeat + vermicompost (1:1:1), and M4 = soil + cocopeat + cowdung (1:1:1). The treatments showed a significant effect on different parameters such as germination percentage, days to germination, survival percentage, chlorophyll content, seed vigor index, shoot, and root length. GA3 treated seedlings performed better than non-GA3-treated seedlings. Among the growing media, M3 showed the best for seed germination and other growth attributes compared to other growing media. In terms of interaction effects, T1M3 showed the highest performance for germination percentage (84.33%), survival percentage (91.0%), and chlorophyll content (44.26%). T1M3 also showed the highest seed vigor index, shoot and root growth, and plant biomass. As a result, the combination of GA3 and growing media containing soil + cocopeat + vermicompost was shown to be the most favorable for papaya seed germination and seedling growth.
Disease epidemics may spread quickly and easily throughout nations and continents in our current global environment, having a devastating effect on public health and the world economy. There are over 513 million people worldwide who have been infected, and more than 6.2 million have died due to SARS-CoV-2. There are treatments but no cures for most viruses. Nevertheless, the spread of viruses can be limited by introducing antiviral coatings on public area surfaces and personal protective equipment (e.g., face masks). This work aims to fabricate a polymer-based coating with acrylic resin as a binder that possesses great antiviral activity against the Feline coronavirus (FCov). The chosen polymer, polyethylene glycol (PEG), is used as an antiviral agent because it contains “green” chemistry benefits such as non-toxicity, being inexpensive, readily recyclable, safe, natural, non-flammable, biocompatible, and biodegradable. The PEG/acrylic coating systems of different weight percentages were coated on the glass substrates by the spray-coating method and cured at room temperature for 24 hours. The developed PEG/acrylic coating system that contains 20 wt% of PEG exhibits the highest anti-viral activities (99.9% against FCov) compared to the other weight percentages. From this study, it has been observed that the hydrophilicity of the coating plays an important role in its antiviral activity. The developed coating has a hydrophilic property, in which the contact angle was measured at 83.28 ± 0.5°. The FTIR reveals that there are no existing toxic components or new components contained in the coating samples.
Copyright © by EnPress Publisher. All rights reserved.