Taking domestic single-player game brands as the research object, this paper discusses the value and strategy of single-player game brands expanding IP operation. It is found that single-player game brands expanding IP operation can improve brand awareness and influence, increase player stickiness and loyalty, and extend product life cycle and market vitality. In order to help single-player game brands expand IP operations, this paper puts forward four suggestions, such as creating core stories, hoping to provide some reference and inspiration for the development of domestic single-player game brands.
Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
Border cities face significant challenges due to political, environmental, and social issues. Strong urban governance can help resolve many of these problems, but it requires identifying practical factors specific to each city’s location. This study aimed to assess the state of urban governance in Paveh, a border city with a population of 25,771 people. The research used both primary data collection (through a questionnaire) and secondary data sources (local and national databases and documents). The study randomly selected 379 households from Paveh’s population and determined a reliability value of 0.913 using the Cochrane procedure. To assess Paveh’s urban governance, eight criteria were used: participatory, rule-of-law compliance, transparency, responsiveness, consensus-oriented, equitable and inclusive, effective and efficient, and accountability. The findings revealed that Paveh’s urban governance, particularly in the dimensions of transparency and participation, is in an unfavorable situation.
Herein, we report a facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked polyacrylamide (PAM) hydrogels for enhanced water absorption and controlled water release aimed at desert agriculture. To prepare the sample, 4 wt% of aqueous PAM solution is mixed with organic cross-linkers of hydroquinone (HQ) and hexamethylenetetramine (HMT) in a 1:1 weight ratio and aqueous potassium chloride (KCl) solution. A specific amount of the above solution is added to the sand, well mixed, and subsequently cured at 150 °C for 8 h. The prepared super-hydrophilic sands were characterized by Fourier-transform infrared spectroscopy (FT-IR) for chemical composition and X-ray diffraction (XRD) for successful polymer coating onto the sand. The water storage for the samples was studied by absorption kinetics at various temperature conditions, and extended water release was studied by water desorption kinetics. The water swelling ratio for the super-hydrophilic sand has reached a maximum of 900% (9 times its weight) at 80 °C within 1 h. The desorption kinetics of the samples showed that the water can be stored for up to a maximum of 3 days. Therefore, super-hydrophilic sand particles were successfully prepared by coating them with PAM hydrogels, which have great potential to be used in sustainable desert agriculture.
The journey towards better healthcare sustainability in Asian nations demands a comprehensive investigation into the impact of urban governance, poverty, and female literacy on infant mortality rates. This study undertakes a rigorous exploration of these key factors to pave the way for evidence-based policy interventions, utilizing data from a panel of six selected Asian countries: Pakistan, China, India, Indonesia, Malaysia, and the Philippines, spanning the years 2001 to 2020. The findings reveal that adequate sanitation facilities, higher female literacy rates, and sustained economic growth contribute to a reduction in infant mortality. Conversely, increased poverty levels and limited women’s autonomy exacerbate the infant mortality rates observed in these countries. The Granger causality analysis validates the reciprocal relationship between urban sanitation (and poverty) and infant mortality rates. Furthermore, the study establishes a causal relationship where female literacy rates Granger-cause infant mortality rates, and conversely, infant mortality rates Granger-cause women’s autonomy in these countries. The variance decomposition analysis indicates that sustained economic growth, improved female literacy rates, and enhanced women’s empowerment will likely impact infant mortality rates in the coming decade. Consequently, in low-income regions where numerous children face potentially hazardous circumstances, it is imperative to allocate resources towards establishing and maintaining accessible fundamental knowledge regarding sanitation services, as this will aid in reducing infant mortality rates.
The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors.
Copyright © by EnPress Publisher. All rights reserved.