The article undertakes an exploration into the rather unexpected progressiveness exhibited by courts across the globe in bestowing protection upon LGBTQ rights. A three-pronged study, which encompasses an examination of the theoretical rationales, empirical investigations, and doctrinal underpinnings of the augmentation of LGBTQ rights in diverse locales, is executed. It is hypothesized that a prima facie paradox emerges, whereby LGBTQ rights have been safeguarded and advanced in an extraordinary fashion, while concurrently, a discernible general trend of deviation from liberal constitutionalism, rights safeguarding mechanisms, and the rule of law is observable in other arenas. This article scrutinizes this contention and discovers that it is substantiated by case law from various regions. Critical theory and Butler’s theory of performativity potentially offer the most cogent explanations for this paradox. They have led to the social embrace of LGBTQ rights, while simultaneously, the enactment or amplification of these rights even in illiberal states furnishes an effortless ‘triumph’ for illiberal political actors, which can be employed as a countermeasure against assaults on their liberal and democratic reputations.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
Medicinal herbs have been extensively utilized in the remediation of various health conditions. Dialium guineense fruit pulp, also well known as Velvet Tamarind is widely consumed in West Africa for its dietary and medicinal properties. The study aims to analyze the phytochemical constituents, vitamin content and the in vitro antioxidant effect of Dialium guineense fruit pulp (DGFP). The phytochemical constituents, vitamins (C, E, B1-12) composition, and in vitro antioxidant activity were examined utilizing standardized analytical methods. The qualitative and quantitative phytochemical screening of the fruit pulp of Dialium guineense was also carried out; the result indicated the presence of flavonoids, alkaloids, saponins, tannins, terpenoids, phenols, steroids, and cardiac glycosides in varying concentrations. The vitamin composition revealed that vitamin C was higher than other vitamins in the fruit pulp. The DPPH (2,2-diphenyl-1-picrylhydrazyl) and nitric oxide scavenging assay showed high radical scavenging activity while the FRAP (Ferric reducing antioxidant power) assay revealed significant reducing power. This indicates that Dialium guineense fruit pulp has potential health benefits.
We develop a relatively cheap technology of processing a scrap in the form of already used tungsten-containing products (spirals, plates, wires, rods, etc.), as well not conditional tungsten powders. The main stages of the proposed W-scrap recycling method are its dispersing and subsequent dissolution under controlled conditions in hydrogen peroxide aqueous solution resulting in the PTA (PeroxpolyTungstic Acid) formation. The filtered solution, as well as the solid acid obtained by its evaporation, are used to synthesize various tungsten compounds and composites. Good solubility of PTA in water and some other solvents allows preparing homogeneous liquid charges, heat treatment of which yield WC and WC–Co in form of ultradispersed powders. GO (Graphene Oxide) and PTA composite is obtained and its phase transition in vacuum and reducing atmosphere (H2) is studied. By vacuum-thermal exfoliation of GO–PTA composite at 170–500℃ the rGO (reduced GO) and WO2.9 tungsten oxide are obtained, and at 700℃—rGO–WO2 composite. WC, W2C and WC–Co are obtained from PTA at high temperature (900–1000℃). By reducing PTA in a hydrogen atmosphere, metallic tungsten powder is obtained, which was used to obtain sandwich composites with boron carbide B4C, W/B4C, and W/(B4C–W), as neutron shield materials. Composites of sandwich morphology are formed by SPS (Spark-Plasma Sintering) method.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
Copyright © by EnPress Publisher. All rights reserved.