Nationwide integration of AI into the contemporary art sector has taken place since government AI regulations in 2023 to promote AI use. China’s AI integration into industry is ‘ahead’ of other countries, meaning that other countries can learn from these creative professionals. Consequently, contemporary visual artists have devised arts-led sustainable AI solutions to overcome global AI concerns. They are now putting these solutions into practice to maintain their jobs, arts forms, and industry. This paper draws on 30 interviews with contemporary visual artists, and a survey with 118 professional artists from across China between 2023 and 2024. Findings show that 87% use AI and 76% say AI is useful and they will continue to use AI into the future. Findings show professionals have had time to find DIY, bottom-up solutions to AI concerns, including (1) building strong authorship practices, identity, and brand, (2) showing human creativity and inner thinking, (3) gaining a balanced independent position with AI. They want AI regulations to liberalise and promote AI use so they can freely experiment and develop AI. These findings show how humans are directing the use of AI, altering current narratives on AI-led impacts on industry, jobs, and human creativity.
This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
This paper uses existing studies to explore how Artificial Intelligence (AI) advancements enhance recruitment, retention, and the effective management of a diverse workforce in South Africa. The extensive literature review revealed key themes used to contextualize the study. This study uses a meta-narrative approach to literature to review, critique and express what the literature says about the role of AI in talent recruitment, retention and diversity mapping within South Africa. An unobtrusive research technique, documentary analysis, is used to analyze literature. The findings reveal that South Africa’s Human Resource Management (HRM) landscape, marked by a combination of approaches, provides an opportunity to cultivate alternative methods attuned to contextual conditions in the global South. Consequently, adopting AI in recruiting, retaining, and managing a diverse workforce demands a critical examination of the colonial/apartheid past, integrating contemporary realities to explore the potential infusion of contextually relevant AI innovations in managing South Africa’s workforce.
Maps of forest stand condition—the current phase of the forest-forming process—will be useful for foresters in their forest management in addition to the forest planning and cartographic materials. The mapping methodology was applied in the test area of the Bolshemurtinsky forest district of the Krasnoyarsk region, which is typical for the southern taiga forests of East Siberia. Source data for mapping was obtained on the basis of descriptions of the forest subcompartments on the GIS attribute table of the forest district. Forest stand confinement to the terrain relief indicators was identified on the basis of the SRTM 55-01 digital terrain model data. Spatial analysis has been performed using the ArcGIS Spatial Analyst module. Mapping capability has been shown not only for the year of forest inventory but also for the earlier period of time. To determine the predominant species and the age of the 100-year-old forest stand, a scheme was proposed in which the conceivable options are typified depending on the succession trend, the forest stand age prior to disturbance, and the period of reforestation. Map fragments of the test area as of 2006—the year of forest inventory—and as of 1906—the year of the intensive colonization beginning in southern Siberia—are demonstrated. Maps of forest condition in the test area represent successions that are typical in the southern taiga forests of Siberia: post-harvest, pyrogenic, and biogenic. The methodology of forest condition mapping is universal.
The study aims to investigate and analyse the social media, precisely the Instagram activity of several hotels in the city of Yogyakarta, Indonesia. Having been the second most popular destination besides Bali, it is mainly dominated by domestic tourism. Although several governmental institutions exist, the study focuses on the hotel’s activity only. The main purpose was to find, that after the classification of the posts, whether there is a more positive effect of one as opposed to the other type of posts. In addition, it was also important to see if with the time advancing positive effect of likes and comments appear and the relation of hashtags, likes and comments. Data was collected between 1st of January 2023. and 15th of July 2024. The first step was to collect posts done by the suppliers and then the posts were classified. Also, the number of hashtags used were collected. Second step was to collect the response from the demand side by gathering their likes and comments. Data then was analysed with SPSS 24 and JASP program. Results show that while there is no significance on increasing likes and comments with the months advancing, but in terms of the type of the posts there is. Promotional posts with other suppliers tend to bring a lot more comments and likes than self-promotional posts. This study’s main purpose to analyse through social media posts to enhance online networking by local suppliers promoting each other’s products.
Copyright © by EnPress Publisher. All rights reserved.