In recent years, phytoremediation as a promising ecological restoration technique has emerged. Phytoremediation is a repair method that uses green plants to transfer, contain, or convert contaminants to the environment. Phytoremediation is a heavy metal, organic or radioactive element contaminated soil and water. The results show
that the use of plant absorption, volatilization, root filtration, degradation, stability and other effects, can purify soil
or water pollutants, to achieve the purpose of purifying the environment, so phytoremediation is a great potential, the development of the clean environment Pollution of green technology. The use of plants to repair contaminated soil is a cheap and durable bioremediation technique. The protection and management of Taihu Lake is an indispensable measure for the protection of Taihu Lake water, and the advantages of phytoremedry investment, low freight and
low leakage of pollutants show that its promotion has this unusual significance. This paper expounds the difference
of remediation soil between Taihu Lake Ecological Shelter Forest, and the comparison of the soil capacity of the
experimental tree species. Second, the correlation between the monitoring projects is discussed.
Exposure to high-frequency (HF) electromagnetic fields (EMF) has various effects on living tissues involved in biodiversity. Interactions between fields and exposed tissues are correlated with the characteristics of the exposure, tissue behavior, and field intensity and frequency. These interactions can produce mainly adverse thermal and possibly non-thermal effects. In fact, the most expected type of outcome is a thermal biological effect (BE), where tissues are materially heated by the dissipated electromagnetic energy due to HF-EMF exposure. In case of exposure at a disproportionate intensity and duration, HF-EMF can induce a potentially harmful non-thermal BE on living tissues contained within biodiversity. This paper aims to analyze the thermal BE on biodiversity living tissues and the associated EMF and bio-heat (BH) governing equations.
Copyright © by EnPress Publisher. All rights reserved.