This article examines how financial technology determines bank performance in different EU countries. The answer to that question would allow banks to choose their development policy. The paper focuses on the main and most popular bank services that are linked to financial technology. A SWOT analysis of FinTech is also presented to show the benefits and drawbacks of FinTech. FinTech-based services are very diverse and are provided by financial firms and banks alike. This paper looks at the financial technology provided by banks: internet usage (internet banking), number of ATMs, credit transfers in a country, percentage of the population in a country holding a debit or credit card and whether that population has received or made a digital payment. Using the multi-criteria assessment methods of CRITIC and EDAS, the authors analysed and compared the countries of the European Union and the financial technology used in them. As a result of the application of these methods, the EU countries under consideration were ranked in terms of the use of financial technology. Subsequently, three banks from different countries with different levels of the use of financial technology were selected for the study. For these banks, financial ratios of profitability were calculated to characterise their performance. Correlation and pairwise regression analyses between the banks’ profitability ratios and financial technology were used to assess the relationship and influence between these ratios. The main conclusion of the study focuses on the extent to which financial technology influences the performance of banks in the selected countries. It is likely that further research will try to take into account the size of the country’s population when analysing all financial technologies. Researchers also needed to find out what influence financial technologies have on the such financial indicators as operational efficiency (costs), financial stability, and capital adequacy.
Nanotechnology is recognized as one of the high and new technologies in the 21st century. Carbon nanotubes have been widely used in molecular sieve, drug transport and seawater desalination due to their unique mechanical, electrical, optical and other excellent properties. As the main representative of carbon nanotube macroscopic materials, carbon nanotube film not only retains the microscopic properties of carbon nanotube, but also has good mechanical properties and stable chemical properties. The preparation and application of carbon nanotubes (CNTS) have attracted extensive attention from scholars at home and abroad. In this paper, the research on carbon nanotube films in recent years is reviewed. Based on the preparation of carbon nanotube films, chemical vapor deposition, LB (Langmuir-Blodgett) film and electrostatic layer-by-layer self-assembly techniques are briefly described. In addition, the applications of carbon nanotubes in biological field, photoelectric nano devices, water treatment, seawater desalination and other fields are also described.
This study evaluates the health and sustainability of higher education systems in nine countries: the USA, UK, Australia, Germany, Canada, China, Brazil, India, and South Africa. Using a multi-level analysis model and principal component analysis (PCA), nine key factors—such as international student numbers, academic levels, and graduate employment rates—were identified, capturing over 90% of the cumulative impact on higher education systems. India, scoring 6.2036 initially, shows significant room for improvement. The study proposes policies to increase graduate employment, promote international faculty collaboration, and enhance India’s educational expenditure, which surpasses 9.8% of GDP. Post-policy simulations suggest India’s score could rise to 8.7432. The paper also addresses the impact of COVID-19 on global education, recommending a hybrid model and increased graduate enrollment in China to reduce unemployment by 5.4%. The research aims to guide sustainable development in higher education globally.
The rapid shift to online learning during COVID-19 posed challenges for students. This investigation explored these hurdles and suggested effective solutions using mixed methods. By combining a literature review, interviews, surveys, and the analytic hierarchy process (AHP), the study identified five key challenges: lack of practical experience, disruptions in learning environments, condensed assessments, technology and financial constraints, and health and mental well-being concerns. Notably, it found differences in priorities among students across academic years. Freshmen struggled with the absence of hands-on courses, sophomores with workload demands, and upperclassmen with mental health challenges. The research also discussed preferred strategies for resolution, emphasizing independent learning methods, managing distractions, and adjusting assessments. By providing tailored insights, this study aimed to enhance online learning. Governments and universities should support practical work, prioritize student well-being, improve digital infrastructure, adapt assessments, foster innovation, and ensure resilience.
This study aims to identify the risk factors causing the delay in the completion schedule and to determine an optimization strategy for more accurate completion schedule prediction. A validated questionnaire has been used to calculate a risk rating using the analytical hierarchy process (AHP) method, and a Monte Carlo simulation on @RISK 8.2 software was employed to obtain a more accurate prediction of project completion schedules. The study revealed that the dominant risk factors causing project delays are coordination with stakeholders and changes in the scope of work/design review. In addition, the project completion date was determined with a confidence level of 95%. All data used in this study were obtained directly from the case study of the Double-Double Track Development Project (Package A). The key result of this study is the optimization of a risk-based schedule forecast with a 95% confidence level, applicable directly to the scheduling of the Double-Double Track Development Project (Package A). This paper demonstrates the application of Monte Carlo Simulation using @RISK 8.2 software as a project management tool for predicting risk-based-project completion schedules.
In developing countries, urban mobility is a significant challenge due to convergence of population growth and the economic attraction of urban centers. This convergence of factors has resulted in an increase in the demand for transport services, affecting existing infrastructure and requiring the development of sustainable mobility solutions. In order to tackle this challenge, it is necessary to create optimal services that promote sustainable urban mobility. The main objective of this research is to develop and validate a comprehensive methodology framework for assessing and selecting the most sustainable and environmentally responsible urban mobility services for decision makers in developing countries. By integrating fuzzy multi-criteria decision-making techniques, the study aims to address the inherent complexity and uncertainty of urban mobility planning and provide a robust tool for optimizing transportation solutions for rapid urbanization. The proposed methodology combines three-dimensional fuzzy methods of type-1, including AHP, TOPSIS and PROMETHEE, using the Borda method to adapt subjectivity, uncertainty, and incomplete judgments. The results show the advantages of using integrated methods in the sustainable selection of urban mobility systems. A sensitivity analysis is also performed to validate the robustness of the model and to provide insights into the reliability and stability of the evaluation model. This study contributes to inform decision-making, improves policies and urban mobility infrastructure, promotes sustainable decisions, and meets the specific needs of developing countries.
Copyright © by EnPress Publisher. All rights reserved.