In recent years, using novel nanomaterials to improve the antifouling and antibacterial performance of reverse osmosis membranes has received much attention. In this study, hydrophilic Ag@ZnO-hyperbranched polyglycerols nanoparticles were fabricated by ring-opening multibranched polymerization of glycidyl acid with the core-shell Ag@ZnO nanoparticles. The cellulose triacetate composite membranes were prepared by grafting Ag@ZnO-HPGs nanoparticles on the surface of cellulose triacetate membranes. The surface of the nanoparticles with active functional group –OH was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Surface morphology, charge, and hydrophilicity of the composite membranes were characterized by scanning electron microscope, zeta potential, and contact angle analysis. The results showed that grafting the Ag@ZnO-HPGs nanoparticles onto the cellulose triacetate membrane surface improved the physical and chemical properties of the cellulose triacetate composite membranes. The water flux of cellulose triacetate composite membranes increased while the salt rejection rate to NaCl slightly decreased. Meanwhile, the cellulose triacetate composite membranes showed excellent antifouling properties of having a high flux recovery. The antibacterial performance of the cellulose triacetate composite membrane against E. coli and S. aureus was prominent that the antibacterial rates were 99.50% and 92.38%, and bacterial adhesion rates were as low as 19.12% and 21.35%, respectively.
Magnetite magnetic nanoparticles (MNP) exhibit superparamagnetic behavior, which gives them important properties such as low coercive field, easy superficial modification and acceptable magnetization levels. This makes them useful in separation techniques. However, few studies have experimented with the interactions of MNP with magnetic fields. Therefore, the aim of this research was to study the influence of an oscillating magnetic field (OMF) on polymeric monolithic columns with vinylated magnetic nanoparticles (VMNP) for capillary liquid chromatography (cLC). For this purpose, MNP were synthesized by coprecipitation of iron salts. The preparation of polymeric monolithic columns was performed by copolymerization and aggregation of VMNP. Taking advantage of the magnetic properties of MNP, the influence of parameters such as resonance frequency, intensity and exposure time of a OMF applied to the synthesized columns was studied. As a result, a better separation of a sample according to the measured parameters was obtained, so that a column resolution (Rs) of 1.35 was achieved. The morphological properties of the columns were evaluated by scanning electron microscopy (SEM). The results of the chromatographic properties revealed that the best separation of the alkylbenzenes sample occurs under conditions of 5.5 kHz and 10 min of exposure in the OMF. This study constitutes a first application in chromatographic separation techniques for future research in nanotechnology.
There are numerous studies reported on the usage of the sapindus emarginatus (SE) fruit in cancer and other treatments in the past few years. In this study, crude SE fruit extract was prepared and it was further used to synthesis gold nanoparticles (Au Nps). The synthesized Au Nps were left embedded in the SE fruit extract. The Au Nps embedded in the SE fruit extract (SE-Au Nps) were characterized using UV-Visiable Spectroscopy, Centrifugal Particle Size analyzer (CPS), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). MTT assay was carried out for both SE fruit extract and SE-Au Nps on MCF7 breast cancer cell line and thus compared. The UV-Visible Absorbance for the SE-Au Nps was obtained at 543 nm. The centrifugal particle size analysis of the Au Nps embedded in SE fruit extract showed the size of the nanoparticles to be widely varying with higher fraction of particles between the size ranges of 15 to 20 nm. The morphology of the Au Nps embedded in SE fruit extract was observed using SEM. The presence of Au Nps in SE fruit extract was confirmed using FTIR. The results of the MTT assay on MCF7 breast cancer cell line proved that the % cell viability was less for SE-Au Nps than that of the SE fruit extract alone. Thus, the antiproliferative activity of the SE fruit extract was significantly enhanced by embedding it with Au Nps and it can be effectively used in therapeutic applications after further studies.
In this paper silver nanoparticles (NPs) which are synthesized by a simple plasma arc discharge method, that is a kind of electrochemical methods, are examined. The method is very simple and silver NPs are obtained very fast by means of two polished silver plates and electrochemical cell. The effects of changing some terms of the experiment including using Hydrogen peroxide (H2O2), temperature and the medium of experiment on oxygen percent and crystalline structure of silver NPs have been studied by transmission electron microscopy, UV-visible spectrophotometery, and X-ray diffraction. Water medium gets larger nanoparticles with less oxygen content compare to air medium. The size of synthesized nanoparticles become smaller and they also become more spherical by using H2O2 in air medium. In water medium, the size and concentration of the silver crystallite increase by temperature growth and adding H2O2 respectively.
A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.
Our environment has been significantly impacted by man-made pollutants, primarily due to industries making substantial use of synthetic chemicals, resulting in significant environmental consequences. In this research investigation, the co-precipitation approach was employed for the synthesis of cellulose-based ferric oxide (Fe2O3/cellulose) and copper oxide nanoparticles (CuOx-NPs). Scanning electron microscopy (SEM) analyses were conducted to determine the properties of the newly synthesised nanoparticles. Furthermore, the synthesized nanoparticles were employed for eliminating chromium from aqueous media under various conditions, including temperature, contact time, adsorbent concentration, adsorbate concentration, and pH. Additionally, the synthesised materials were used to recover Cr(VI) ions from real samples, including tap water, seawater, and industrial water, and the adsorptive capacity of both materials was evaluated under optimal conditions. The synthesis of Fe2O3/cellulose and CuOx-NPs proved to be effective, as indicated by the outcomes of the study.
Copyright © by EnPress Publisher. All rights reserved.