Assessment of water resources carrying capacity (WRCC) is of great significance for understanding the status of regional water resources, promoting the coordinated development of water resources with environmental, social and economic development, and promoting sustainable development. This study focuses on the Longdong Loess Plateau region and utilized panel data spanning from 2010 to 2020, established a three-dimensional evaluation index system encompassing water resources, economic, and ecological dimensions, uses the entropy-weighted TOPSIS model coupled with global spatial autocorrelation analysis (Global Moran’s I) and the hot spot analysis (Getis-Ord Gi* index) method to comprehensively evaluate the spatial distribution of the WRCC in the study region. It can provide scientific basis and theoretical support for decision-making on sustainable development strategies in the Longdong Loess Plateau region and other regions of the world.From 2010 to 2020, the overall WRCC of the Longdong Loess Plateau area show some fluctuations but maintained overall growth. The WRCC in each county and district predominantly fell within level III (normal) and level IV (good). The spatial distribution of the WRCC in each county and district is featured by clustering pattern, with neighboring counties displaying similar values, resulting in a spatial distribution pattern characterized by high carrying capacity in the south and low carrying capacity in the north. Based on these findings, our study puts forth several recommendations for enhancing the WRCC in the Longdong Loess Plateau area.
Water splitting has been one of the potential techniques as a clean and renewable energy resource for the fulfillment of world energy demands. One of the major aspects of this procedure is the exploitation of efficient and inexpensive electrocatalysts due to the fact that the water oxidation procedure is accompanied by a delayed reaction. In this research, ZnO-CoFe2O4 nanostructure was successfully synthesized via the green method and green resources from cardamom seeds and ginger peels for oxygen evolution reaction (OER). The modified Glassy carbon electrode (GCE) with ZnO-CoFe2O4 is effective for the electrochemical water oxidation interaction since it has sufficient electrical strength and excellent catalytic performance. The creation of rice-like and small granular structures of ZnO-CoFe2O4 nano-catalysts was confirmed by characterization methods such as XRD, FESEM, EDS and MAP. According to the achieved results, in the electrolysis of water, with in-cell voltage of 1.40 V and 50 mA cm–2 for current density in a 0.1 M KOH electrolyte and OER only has 170 mV overpotentials.
In this paper, we deal with one of the most urgent and relevant topics nowadays, i.e., water pollution. The problem is finding a valid candidate for the absorption and removal of different kinds of pollutants commonly found in water. There are already some indications about graphene oxide as a potential candidate. In the present work, we take a step forward to show how graphene nanoplatelets (rather than the oxide form of this material) are capable of decontaminating water. In this starting step, we use a specific substance as a model pollutant, i.e., acetonitrile, leaving for the future steps, to extend the analysis to additional types of pollutants. In addition to laboratory-produced graphene nanoplatelets, we already examined in the past; now we wish to consider also commercially available ones, so that the new results will not be bound to a laboratory (low technology readiness level) material, but will become interesting also from the industrial point of view, thanks to the scalability of the nanoplatelets production. For this aim, we compare the performance of two types of filters based on two classes of nanomaterials, i.e., those produced by microwave and ultrasound assisted exfoliation, already analyzed in our earlier works, with those commercially distributed by an Italian company, i.e., NANESA, http://www.nanesa.com/. The latter is an innovative SME involved in the production of graphene-based nanomaterials. We focus here in the graphene nanoplatelets, commercially available in industrial batches (GXNan grades). The present study leads to determine which filtering membrane, among the various types of commercial graphene considered, shows the greatest stability, and the lack of breakage of the membrane, concentrating on such accessory features, given that all types of graphene showed excellent adsorption properties.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
The melon culture is one of the Brazilian horticultural crops, due to its productive potential and socio-economic role. It is recommended for the State of Goiás and the Federal District for it is easy to plant and having need of zoning of climatic conditions and thus, being able to perform their sowing. The present work used the Sarazon program to perform the water balance of the melon crop, for the 2nd, 4th and 6th five-day sowing dates in August, September and October and in relation to the water reserves in the soil of 50 mm and 75 mm. The data were spatialized using the SPRING 4.3 program. It was observed that the producers are performing in practice what can be demonstrated in theory that the period October 16–20 is the most indicated for sowing in soils of 50 mm of water reserve and October 6–10 the beginning of sowing in soil of 75 mm of water reserve for the cultivation of melon and have adequate profitability.
The use of different energy sources and the worry of running out of some of them in the modern world have made factors such as environmental pollution and even energy sustainability vital. Vital resources for humanity include water, environment, food, and energy. As a result, building strong trust in these resources is crucial because of their interconnected nature. Sustainability in security of energy, water and food, generally decreases costs and improves durability. This study introduces and describes the components of a system named “Desktop Energetic Dark Greenhouse” in the context of the quadruple nexus of water, environment, food, and energy in urban life. This solution can concurrently serve to strengthen the sustainable security of water, environment, food, and energy. For home productivity, a small-scale version of this project was completed. The costs and revenues for this system have been determined after conducting an economic study from the viewpoints of the investor and the average household. The findings indicate that the capital return period is around five years from the investor’s perspective. The capital return on investment for this system is less than 4 years from the standpoint of the households. According to the estimates, this system annually supplies about 20 kg of vegetables or herbs, which means about one third of the annual needs of a family.
Copyright © by EnPress Publisher. All rights reserved.