Depression is a mental disorder caused by various causes with significant and persistent depressed mood as the main clinical feature, and is the most common mental illness worldwide and in our country. The number of patients with depression worldwide was as high as 350 million in 2017, and the number of patients with depression in our country was nearly 100 million in 2019. The greatest danger of depression is self-injurious and suicidal behaviour, and this behaviour carries a high medical burden. Medication is the most costly treatment for depression in China, and while it is an effective way to treat patients with depression, it has many side effects and poor patient compliance. Non-pharmacological treatments commonly used in clinical practice include physiotherapy and psychotherapy. Physiotherapy is commonly used in non-convulsive electroconvulsive therapy, but its clinical efficacy is uncertain and it can also cause adverse effects such as heart failure and arrhythmias, which are poorly tolerated by patients. Psychotherapy is also a common non-pharmacological therapy. Cognitive therapy is a common form of psychotherapy, but the cycle of cognitive therapy is too long, the cost to the patient is high, and the patient’s cognitive ability has certain requirements. Music therapy is a combination of art and science. It is a cross-discipline that combines body, movement, dance and psychology and is a method of psychotherapy that has biological, psychological and social functions to compensate for deficiencies. Music therapy sees a fundamental connection between mind and body and emphasises that what affects the body also affects the mind. When mind-body integration is lacking, individuals will suffer from a variety of psychological disorders. Therefore, the core principles of music therapy emphasise that holistic individual health is embodied in the integration of mind and body, that body movement is expressive and communicative, and that music therapy uses body movement as a method of assessing the individual and as a means of clinical intervention.
Despite Cameroon’s immense sand reserves, several enterprises continue to import standardized sands to investigate the properties of concretes and mortars and to guarantee the durability of built structures. The present work not only falls within the scope of import substitution but also aims to characterize and improve the properties of local sand (Sanaga) and compare them with those of imported standardized sand widely used in laboratories. Sanaga sand was treated with HCl and then characterized in the laboratory. The constituent minerals of Sanaga sand are quartz, albite, biotite, and kaolinite. The silica content (SiO2) of this untreated sand is 93.48 wt.%. After treatment, it rose 97.5 wt.% for 0.5 M and 97.3 wt.% for 1 M HCl concentration. The sand is clean (ES, 97.67%–98.87%), with fineness moduli of 2.45, 2.48, and 2.63 for untreated sand and sand treated with HCl concentrations of 0.5 and 1 M respectively. The mechanical strengths (39.59–42.4 MPa) obtained on mortars made with untreated Sanaga sand are unsatisfactory compared with those obtained on mortars made with standardized sand and with the expected strengths. The HCl treatment used in this study significantly improved these strengths (41.12–52.36 MPa), resulting in strength deficiencies of less than 10% after 28 curing days compared with expected values. Thus, the treatment of Sanaga sand with a 0.5 M HCl concentration offers better results for use as standardized sand.
Cancer is the 3rd leading cause of death globally, and the countries with low-to-middle income account for most cancer cases. The current diagnostic tools, including imaging, molecular detection, and immune histochemistry (IHC), have intrinsic limitations, such as poor accuracy. However, researchers have been working to improve anti-cancer treatment using different drug delivery systems (DDS) to target tumor cells more precisely. Current advances, however, are enough to meet the growing call for more efficient drug delivery systems, but the adverse effects of these systems are a major problem. Nanorobots are typically controlled devices made up of nanometric component assemblies that can interact with and even diffuse the cellular membrane due to their small size, offering a direct channel to the cellular level. The nanorobots improve treatment efficiency by performing advanced biomedical therapies using minimally invasive operations. Chemotherapy’s harsh side effects and untargeted drug distribution necessitate new cancer treatment trials. The nanorobots are currently designed to recognize 12 different types of cancer cells. Nanorobots are an emerging field of nanotechnology with nanoscale dimensions and are predictable to work at an atomic, molecular, and cellular level. Nanorobots to date are under the line of investigation, but some primary molecular models of these medically programmable machines have been tested. This review on nanorobots presents the various aspects allied, i.e., introduction, history, ideal characteristics, approaches in nanorobots, basis for the development, tool kit recognition and retrieval from the body, and application considering diagnosis and treatment.
Constructed wetlands have emerged as a sustainable alternative for decentralized wastewater treatment in developing countries which face challenges with urbanization and deteriorating infrastructure. This paper discusses the key factors affecting the implementation of constructed wetlands in developing countries. A case study research design was adopted, which focused on Bulawayo, Zimbabwe. A mixed-method approach was adopted for the study. Spatial analysis was conducted to identify potential sites for constructed wetlands in the city of Bulawayo. Semi structured interviews were conducted, with relevant stakeholders, such as town planners, civil engineers, NGO representatives, community leaders, and quantity surveyors. The findings reveal that political reforms, public acceptance, land availability, and funding are crucial for the successful implementation of constructed wetlands. Additionally, four sites were identified as the most favorable preliminary locations for these systems. The paper captures all the key factors relevant to the implementation of constructed wetlands (CWs) with a closer look at policy and the role it plays in the adoption of decentralized wastewater treatment systems. Formulating policy around the decentralized sanitation systems was considered imperative to the success of the systems whether in implementation or in operation. The paper adds to knowledge in the subject of sustainable wastewater treatment alternatives for developing countries. However, further research can be conducted with a different methodology to ascertain the applicability of the systems in developing urban cities considering other important aspects in the implementation of wastewater treatment systems.
Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.
With the increasing climate change crisis, the ongoing global energy security challenges, and the prerequisites for the development of sustainable and affordable energy for all, the need for renewable energy resources has been highlighted as a global aim of mankind. However, the worldwide deployment of renewable energy calls for large-scale financial and technological contributions which many States cannot afford. This exacerbates the need for the promotion of foreign investments in this sector, and protecting them against various threats. International Investment Agreements (IIAs) offer several substantive protections that equally serve foreign investments in this sector. Fair and Equitable Treatment (FET) clauses are among these. This is a flexible standard of treatment whose boundaries are not clearly defined so far. Investment tribunals have diverse views of this standard. Against this background, this article asks: What are the prominent international renewable energy investment threats, and how can FET clauses better contribute to alleviating these concerns? Employing a qualitative method, it analyses the legal aspects and properties of FET and concludes that the growing security and regulatory threats have formed a sort of modern legitimate expectations on the part of renewable energy investors who expect host states to protect them against such threats. Hence, IIAs and tribunals need to uphold a definite and broadly applicable FET approach to bring more consistency and predictability to arbitral awards. This would help deter many unfavourable practices against investments in this sector.
Copyright © by EnPress Publisher. All rights reserved.