This research article examines the relationship between the level of social welfare expenditure and economic growth rates, based on unbalanced panel data from 38 OECD countries covering the period from 1985 to 2022. Four hypotheses are formulated regarding the impact of social expenditure on economic growth rates. Through multiple iterations of regression model building, employing various combinations of dependent and independent variables, and conducting tests for stationarity and causality, compelling empirical evidence was obtained on the negative influence of social welfare spending on economic growth rates. The study takes into account both government and non-governmental expenditures on social welfare, a novelty in this field. This approach allows for a detailed examination of the effects of different components on economic growth and provides a more comprehensive understanding of the relationships. The findings indicate that countries with high levels of social welfare spending experience a slowdown in economic growth rates. This is associated with increasing demands on social security systems, their growing inclusivity, and the escalating required levels of financing, which are increasingly covered by debt sources. The research highlights the need to strike a balance between social expenditures and economic growth rates and proposes a set of measures to ensure economic growth outpaces the indexing of social expenditures. The abstract underscores the relevance of the study in light of the widespread recognition of the necessity to combat inequality, poverty, and destitution, and calls on OECD countries’ governments to pay increased attention to social policy in order to achieve sustainable and balanced economic growth.
Promoting travelling intention within social media is significant for stakeholders to grasp a new tourism market and cultivate a new model for development of tourism industry. This study aims to understand path of destination image affecting travelling intention, and to investigate the mediation role of perceived value, furthermore, to uncover the role of moderator of situational involvement. This paper conducts a survey on tourists visiting Guilin, collecting 435 questionnaires, and uses the structural equation modeling method to explore how the image of the tourism destination affects tourists’ willingness to travel. The research results indicate that cognitive image, emotional image, and projected image all have a significant positive impact on perceived value, perceived value as a significant mediator to bridge the relationship among the destination image and tourists’ travel intention. Furthermore, situational involvement plays a negative moderating role in the mediating effect of emotional value. This study endeavor will serve to enrich the understanding of perceived value theory, destination image theory, and tourism consumer behavior theory. It will also provide theoretical foundations and policy recommendations for guiding tourism consumer behavior, analyzing destination image perception, and destination marketing.
The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
In recent years, awareness of sustainability has increased significantly in the hospitality industry, particularly within the hotel sector, which is recognized as a major contributor to environmental degradation. In response to this challenge, hotel managers are increasingly implementing green human resource management (GHRM) practices to increase Organizational Citizenship Behavior. Considering job satisfaction, and organizational commitment as mediator. A survey was conducted with 383 employees from three- and four-star Egyptian hotels and the obtained data were analyzed using SPSS version 22 and Amos version 24. Structural equation modelling was used to analyze the data. The study revealed that GHRM practices positively impacts Organizational Citizenship Behaviors (OCB), job satisfaction and organizational commitment in addition, the study found that job satisfaction and organizational mediates the relationship between Green Human Resource Management and Organizational Citizenship Behavior. The study found a positive link between GHRM and OCB, partially mediated by job satisfaction and organizational commitment. The recommend that implementation of GHRM practices in the hotel industry can have significant positive implications.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
This study aims to analyse the current state of library and information science (LIS) education in South Korea and identify educational challenges in building a sustainable library infrastructure in the digital age. As libraries’ role expands in a rapidly changing information environment, LIS education must evolve. Using topic modelling techniques, this study analysed course descriptions from 37 universities and identified 10 key topics. The analysis revealed that, while the current curricula cover both traditional library science and digital technology topics, focus on the latest technology trends and practical, hands-on education is lacking. Based on these findings, this study suggests strengthening digital technology education by incorporating project-based learning; integrating emerging technologies, such as data science and artificial intelligence; and emphasising community engagement and soft skills development. This study provides insights into improving LIS education to better align with the digital era’s evolving demands.
Copyright © by EnPress Publisher. All rights reserved.