Despite the existence of a voluminous body of literature covering the impact of infrastructure public-private partnerships (PPPs) on public value within the context of Western countries, scant attention has been paid to this topic in the Middle East. Given that the region has hosted numerous PPP projects that were implemented even without the rudimentary legal and regulatory frameworks considered essential for such projects to succeed, a study of PPPs within that region would thus be particularly useful, since an unpacking of the success factors for PPPs in the Middle East can reveal important practical insights that will advance the knowledge of PPP success factors overall. This paper, therefore, explores the rehabilitation and expansion of Jordan’s Queen Alia International Airport via the PPP route. It finds that the factors contributing to the project’s successful implementation can be categorized into those on the macro level related to political support, and the micro level factors concerned with management of daily activities involved in the partnership between the public and private sectors.
This work evaluates the physical and physical-chemical parameters of the strawberry variety “Festival”, obtained in the soil and climate conditions of Humpata, Huila Province, Angola, following the transformation into sweet of adequate quality. The analyses made were: the mass determined on an analytical balance and the transversal and longitudinal diameters with a pachymeter. Other analyses were: total titratable acidity by volumetry, pH by potentiometry, total soluble solids by refractometry, moisture and ash by gravimetry. The study showed that the pH of the pulp was 3.41; and in the candy it was 3.31. The titratable acidity in the strawberry pulp had a value of 0.186 g/100 mL and in the jam 0.096 g/100 mL; the ascorbic acid content in the pulp was 18.60 mg∕100 g. The average soluble solids content in the pulp was 9.51 °Brix and for the jam 68.83 °Brix. These chemical characteristics of the pulp and jam provide information about their nutritional values.
The propagation of plant material in the arracacha crop is commonly done vegetatively through asexual seed, this activity has allowed its multiplication and conservation over time. The plant material available is of low quality, affecting the development and potential yield of the crop and therefore the producer’s income. The objective of the research was to comparatively analyze two technologies for the production of arracacha seed: local technology and Agrosavia technology. The information for the local technology was obtained from surveys applied to farmers and the selection was made using the deterministic sampling technique, and for the Agrosavia technology through the recording of data and production costs in research lots at commercial scale. Descriptive statistics and calculation of economic return indicators were applied for the two situations. The results show that the use of quality seed allows obtaining higher seed production (251,559 unit ha-1) and tuberous roots (25,875 kg ha-1), being superior to local technology by 14% and 28% respectively; thus, the arracacha producer acquires greater economic efficiency by obtaining lower unit cost per kilo produced and better net income with a marginal rate of return of 316.45. The results achieved are useful for farmers, companies and entities that wish to produce quality seed and support the arracacha production system in Colombia.
Humic substances are used in agriculture as promoters of plant growth, especially of the root system. The objective of the work was to evaluate the effect of the application of different doses of fulvic acid on the growth and productivity of American lettuce, Raider Plus cultivar. The experimental design used was entirely randomized, with five treatments of fulvic acid 0, 1, 2, 4, 8 mL·L-1 and four repetitions, applied at the time of transplanting. Two experiments were conducted simultaneously: one in the greenhouse, where fresh and dry mass of the aboveground and root parts, length and volume of the roots were evaluated; and the other in the field, where, at the end of the cycle, fresh and dry mass of the aboveground parts, number of leaves, stem length and average head circumference were evaluated. The application of different doses of fulvic acid promoted the growth of lettuce plants, especially the root system. The emission of roots, with predominance, of those of smaller diameter, was found in the higher concentrations of fulvic acid. The number of leaves and the average circumference of the head expressed responses in the concentrations of fulvic acid.
This paper examines the transformative potential of e-government in public administration, focusing on its capacity to enhance service delivery, transparency, accessibility, cost efficiency, and civic engagement. The study identifies key challenges, including inadequate technological infrastructure, cybersecurity vulnerabilities, resistance to change within public institutions, and a lack of public awareness about e-government services. These barriers hinder the seamless operation and adoption of digital government initiatives. Conversely, the study highlights significant opportunities such as streamlined service delivery, enhanced transparency through real-time access to government data, increased accessibility for marginalized and remote communities, substantial cost savings, and greater civic engagement via digital platforms. Addressing these challenges through targeted strategies—enhancing technological infrastructure, bolstering cybersecurity, managing organizational change, and raising public awareness—can help policymakers and public administrators implement more effective and inclusive e-government initiatives. Additionally, the integration of these digital solutions can drive sustainable development and digital inclusion, fostering social equity and economic growth. By leveraging these opportunities, governments can achieve more efficient, transparent, and accountable governance. Ultimately, the successful implementation of e-government can transform the relationship between citizens and the state, building trust and fostering a more participatory democratic process.
Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells within the bone marrow. It is the most serious form of plasma cell dyscrasias, whose complications—hypercalcemia, renal failure, anemia, and lytic bone lesions—are severe and justify the therapeutic management. Imaging of bone lesions is a cardinal element in the diagnosis, staging, study of response to therapy, and prognostic evaluation of patients with MM. Historically, the skeletal radiographic workup (SRW), covering the entire axial skeleton, has been used to detect bone lesions. Over time, new imaging techniques that are more powerful than SRW have been evaluated. Low-dose and whole-body computed tomography (CT) supplants SRW for the detection of bone involvement, but is of limited value in assessing therapeutic response. Bone marrow MRI, initially studying the axial pelvic-spinal skeleton and more recently the whole body, is an attractive alternative. Beyond its non-irradiating character, its sensitivity for the detection of marrow damage, its capacity to evaluate the therapeutic response and its prognostic value has been demonstrated. This well-established technique has been incorporated into disease staging systems by many health systems and scientific authorities. Along with positron emission tomography (PET)-18 fluorodeoxyglucose CT, it constitutes the current imaging of choice for MM. This article illustrates the progress of the MRI technique over the past three decades and situates its role in the management of patients with MM.
Copyright © by EnPress Publisher. All rights reserved.