With the continuous development of globalization, communication among countries around the world is increasingly frequent, and multicultural integration has become the mainstream of the development of the current era. Language, as the carrier of multicultural integration, is an important tool to promote international communication and integration, especially English, as an international language with the largest number of users and the widest range, has extensive practicability and communication. With the continuous deepening of China's reform and opening up, communication with foreign countries has become increasingly close. English has become a basic language skill that college students must master proficiently. The transformation of English education is an inevitable trend that conforms to the development of the times. However, in the current process of English teaching in universities, there are outdated educational ideas and methods, and English teaching and cross-cultural awareness cultivation have not been effectively combined, Causing a lack of interest in English among college students, the inability to truly apply learning outcomes to practical situations, and the loss of its true significance in English teaching. This article analyzes the important impact of the current multicultural integration environment on college English teaching, as well as the problems existing in contemporary college English teaching practice, and proposes targeted transformation paths for college English education in the context of multicultural integration.
This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
The article presents an answer to the current challenge about needs to form methodological approaches to the digital transformation of existing industrial enterprises (EIE). The paper develops a hypothesis that it is advisable to carry out the digital transformation of EIE based on considering it as a complex technical system using model-based system engineering (MBSE). The practical methodology based on MBSE for EIE digital representation creation are presented. It is demonstrated how different system models of EIE is created from a set of entities of the MBSE approach: requirements—unctions—components and corresponding matrices of interconnections. Also the principles and composition of tasks for system architectures creation of EIE digital representation are developed. The practical application of proposed methodology is illustrated by the example of an existing gas distribution station.
The MENA region, known for its significant oil and gas production, has been widely acknowledged for its reliance on fossil fuels. The dependence on fossil fuels has led to significant environmental pollution. Therefore, the shift towards a more environmentally friendly and enduring future is crucial. Thus, the current study tries to investigate the effect of green technology innovations on green growth in MENA region. Specifically, we examine whether the effect of green technology innovations on green growth depend on the threshold level of income. To this end, a panel threshold model is estimated for a sample of 10 MENA countries over the period 1998–2022. Our main findings show that only countries with income level beyond the threshold can benefit significantly from green technology innovations in term of green growth. Nevertheless, our findings indicate a substantial and adverse impact of green technology innovation on countries where income levels fall below the specified threshold.
Copyright © by EnPress Publisher. All rights reserved.