Vehicle detection stands out as a rapidly developing technology today and is further strengthened by deep learning algorithms. This technology is critical in traffic management, automated driving systems, security, urban planning, environmental impacts, transportation, and emergency response applications. Vehicle detection, which is used in many application areas such as monitoring traffic flow, assessing density, increasing security, and vehicle detection in automatic driving systems, makes an effective contribution to a wide range of areas, from urban planning to security measures. Moreover, the integration of this technology represents an important step for the development of smart cities and sustainable urban life. Deep learning models, especially algorithms such as You Only Look Once version 5 (YOLOv5) and You Only Look Once version 8 (YOLOv8), show effective vehicle detection results with satellite image data. According to the comparisons, the precision and recall values of the YOLOv5 model are 1.63% and 2.49% higher, respectively, than the YOLOv8 model. The reason for this difference is that the YOLOv8 model makes more sensitive vehicle detection than the YOLOv5. In the comparison based on the F1 score, the F1 score of YOLOv5 was measured as 0.958, while the F1 score of YOLOv8 was measured as 0.938. Ignoring sensitivity amounts, the increase in F1 score of YOLOv8 compared to YOLOv5 was found to be 0.06%.
Lithospermum extract from Lithospermum is a kind of naphthoquinone, which has good anti-ultraviolet and anti-bacterial function. In this paper, the effects of different treatment temperature, time and ratio of liquid to liquid on the UV resistance of Lithospermum erythrorhizon extract were studied. The optimum extraction conditions were as follows: extraction temperature 60 ℃, extraction time 2 h, ratio of liquid to liquid of Lithospermum and ethanol 1:11. In this paper, the anti-UV finishing of cotton fabric was carried out, and the anti-ultraviolet and whiteness of the fabric were taken as the main indexes. The optimum process of the anti-UV finishing was as follows: the impregnation temperature was 70 ℃, the immersion time was 2h, 1:40. Compared with the uncoated cotton fabric, the fabric UPF value of the fabric was improved from 12.31 to 83.25, and the anti-ultraviolet performance was excellent, and it had certain bacteriostatic effect on Bacillus subtilis and Escherichia coli.
Copyright © by EnPress Publisher. All rights reserved.