In the modern economy, non-financial reporting has become an essential tool for evaluating the social performance of companies. This article explores the importance of non-financial reporting as a central element in assessing sustainable performance, focusing on analyzing sustainability reports published by 20 companies listed on the Bucharest Stock Exchange (BVB). The study examines how these companies approach environmental, social, and governance (ESG) aspects in their reports and what is the relationship between these aspects and financial reporting indicators. Through the statistical analysis of the non-financial reports published by companies participating in the study with the help of the Pearson coefficient and the regression equations, the correlation between the financial and non-financial indicators is determined in order to validate the research hypotheses. The results indicate increased attention to transparency and social responsibility, highlighting the correlation between sound reporting practices and cooperative performance by combining social and environmental aspects with financial information. The research also highlights the challenges encountered in the reporting process and the level of compliance with international sustainability standards.
In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
In this investigation the effect of collection seasons of explants (winter, spring and summer), type of explants (leaf disc and intermodal segments) and length of explants (0.5, 1.0 and 1.5 cm) for callusing in low-chill peach were standardized. The maximum callus induction (97.78%) in the low-chill peach was obtained from the intermodal segments of 0.5 cm in length used as an explant collected during spring season. The structural changes on the surface of the callus (5–7 weeks old yellowish green compact callus) during the progress of somatic embryogenesis of low-chill peach from the both intermodal segment as well as leaf disc derived callus were also examined with the use of scanning electron microscope (SEM). The SEM studies indicated that callus derived from internodal segment explant had the highest frequency of somatic embryos than callus from leaf discs. The SEM investigation, also demonstrated the sequential events/steps leading to low-chill peach somatic embryogenesis which was originating from somatic embryo mother cells through one unicellular pathway. Two types of calli were morphologically distinguished in both leaf disc and intermodal segment generated callus and these were the compact, well organized yellowish green embryogenic callus, containing large number of small, rich cytoplasmic, starch containing meristematic cells and soft and unorganized non-embryogenic callus containing sparsely cytoplasmic, vacuolated, and large cells devoid of metabolic reserves. The present SEM studies clearly demonstrated that somatic cells from peach explants generated callus could develop into fully differentiated somatic embryos through the characteristic embryological patterns of differentiation.
In the domains of geological study, natural resource exploitation, geological hazards, sustainable development, and environmental management, lithological mapping holds significant importance. Conventional approaches to lithological mapping sometimes entail considerable effort and difficulties, especially in geographically isolated or inaccessible regions. Incorporating geological surveys and satellite data is a powerful approach that can be effectively employed for lithological mapping. During this process, contemporary RS-enhancing methodologies demonstrate a remarkable proficiency in identifying complex patterns and attributes within the data, hence facilitating the classification of diverse lithological entities. The primary objective of this study is to ascertain the lithological units present in the western section of the Sohag region. This objective will be achieved by integrating Landsat ETM+ satellite imagery and field observations. To achieve our objectives, we employed many methodologies, including the true and false color composition (FCC&TCC), the minimal noise fraction (MNF), principal component analysis (PCA), decoration stretch (DS), and independent component analysis (ICA). Our findings from the field investigation and the data presented offer compelling evidence that the distinct lithological units can be effectively distinguished. A recently introduced geology map has been incorporated within the research area. The sequence of formations depicted in this map is as follows: Thebes, Drunka, Katkut, Abu Retag, Issawia, Armant, Qena, Abbassia, and Dandara. Implementing this integrated technique enhances our comprehension of geological units and their impacts on urban development in the area. Based on the new geologic map of the study area, geologists can improve urban development in the regions by detecting building materials “aggregates”. This underscores the significance and potential of our research in the context of urban development.
The maize commodity is of strategic significance to the South African economy as it is a stable commodity and therefore a key factor for food security. In recent times climate change has impacted on the productivity of this commodity and this has impacted trade negatively. This paper explores the intricate relationship between climatic factors and trade performance for the South African maize. Secondary annual time series data spanning 2001 to 2023, was sourced from an abstract from Department of Agriculture, Land Reform and Rural Development (DALRRD) and World Bank’s Climate Change Knowledge Portal. Autoregressive Distributed Lag (ARDL) cointegration technique was used as an empirical model to assess the long-term and short-term relationships between explanatory variables and the dependent variable. Results of the ARDL model show that, average annual rainfall (β = 2.184, p = 0.056), fertilizer consumption (β = 1.919, p = 0.036), gross value of production (β = 1.279 , p = 0.006) and average annual surface temperature (β = −0.650, p = 0.991) and change in temperature for previous years, (β = −0.650, p = 0.991) and the effects towards coefficient change for export volumes, (β = 0.669, p = 0.0007). In overall, as a recommendation, South African policymakers should consider these findings when developing strategies to mitigate the impacts of some of these climatic factors and implementing adaptive strategies for maize producers.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
Copyright © by EnPress Publisher. All rights reserved.