A gradually detailed geophysical investigation took place on Ancient Marina territory. In that area was extended Ancient Tritaea, according to responsible Archaeological Services. The first approach had been attempted since 1988 by applied electric mapping based on a twin-probe array. Later, the survey extended to the peripheral zone under the relative request from the 6th Archaeological Antiquity. A new approach was implemented by combining three different geophysical techniques, like electrical mapping, total intensity, and vertical gradient. These were applied on discrete geophysical grids. Electric mapping tried to separate the area into low and high-interest subareas according to soil resistance allocation. That technique detected enough geometrical characteristics, which worked as the main lever for the application of two other geophysical techniques. The other two techniques would be to certify the existence of geometrical characteristics, which divorced them from geological findings. Magnetic methods were characterized as a rapid technique with greater sensitivity in relation to electric mapping. Also, vertical gradient focuses on the horizontal extension of buried remains. Processing of magnetic measurements (total and vertical) certified the results from electric mapping. Also, both of the techniques confirmed the existence of human activity results, which were presented as a cross-section of two perpendicular parts. The new survey results showed that the new findings related to results from the previous approach. Geophysical research in that area is continuing.
With modern society and the ever-increasing consumption of polymeric materials, the way we look at products has changed, and one of the main questions we have is about the negative impacts caused to the environment in the most diverse stages of the life cycle of these materials, whether in the acquisition of raw materials, in manufacturing, distribution, use or even in their final disposal. The main methodology currently used to assess the environmental impacts of products from their origin to their final disposal is known as Life Cycle Assessment (LCA). Thus, the objective of this work is to evaluate how much the biodegradable polymer contributes to the environment in relation to the conventional polymer considering the application of LCA in the production mode. This analysis is configured through the Systematic Literature Review (SLR) method. In this review, 28 studies were selected for evaluation, whose approaches encompass knowledge on LCA, green biopolymer (from a renewable but non-biodegradable source), conventional polymer (from a non-renewable source) and, mainly, the benefits of using biodegradable polymers produced from renewable sources, such as: corn, sugarcane, cellulose, chitin and others. Based on the surveys, a comparative analysis of LCA applications was made, whose studies considered evaluating quantitative results in the application of LCA, in biodegradable and conventional polymers. The results, based on comparisons between extraction and production of biodegradable polymers in relation to conventional polymers, indicate greater environmental benefits related to the use of biodegradable polymers.
Molybdenum (Mo) is considered and described as an essential element for living organisms’ development. Until now, no studies have been performed on genes involved in the Mo transporter in ancestral Ipomoea species. This study aimed to identify potential Mo genes in Ipomoea trifida and I. triloba genomes using bioinformatics tools. We identified four Mo transporter genes, two in I. trifida and two in I. triloba. Based on the RNA-seq datasets, we observed that Mo genes are expressed (in silico) and present different mechanisms between the tissues analyzed. The information generated in this study fills missing gaps in the literature on the Mo gene in an important agronomic crop.
Given the increasing demand for sustainable energy sources and the challenges associated with the limited efficiency of solar cells, this review focuses on the application of gold quantum dots (AuQDs) in enhancing solar cell performance. Gold quantum dots, with their unique properties such as the ability to absorb ultraviolet light and convert it into visible light expand the utilization of the solar spectrum in solar cells. Additionally, these quantum dots, through plasmonic effects and the enhancement of localized electric fields, improve light absorption, charge carrier generation (electrons and holes), and their transfer. This study investigates the integration of quantum dots with gold plasmonic nanoparticles into the structure of solar cells. Experimental results demonstrate that using green quantum dots and gold plasmonic nanoparticles as intermediate layers leads to an increase in power conversion efficiency. This improvement highlights the significant impact of this technology on solar cell performance. Furthermore, the reduction in charge transfer resistance and the increase in short-circuit current are additional advantages of utilizing this technology. The findings of this research emphasize the high potential of gold quantum dots in advancing next-generation solar cell technology.
To investigate the effect of the location of vacuum insulation panels on the thermal insulation performance of marine reefer containers, a 20ft mechanical refrigeration reefer container was employed in this paper, and the physical and mathematical models of three kinds of envelopes composed of vacuum insulation panels (VIP) and polyurethane foam (PU) were numerically established. The heat transfer of three types of envelopes under unsteady conditions was simulated. In order to be able to analyze theoretically, the Rasch transform is used to analyze the thermal inertia magnitude by calculating the thermal transfer response frequency and the thermal transfer response coefficient for each model, and the results are compared with the simulation results. The results implied that the insulation performance of VIP external insulation is the best. The delay times of each model obtained from the simulation results are 0.81 h, 1.45 h, 2.03 h, and 2.24 h, while the attenuation ratios are 8.93, 20.39, 20.62, and 21.78, respectively; the delay times calculated from the theoretical analysis are 0.78 h, 1.43 h, 1.99 h, and 2.20 h, respectively; and the attenuation ratios are 8.84, 20.31, 20.55, and 21.72, respectively. The carbon reduction effect of VIP external insulation is also the best. The most considerable carbon reduction is 3.65894 kg less than the traditional PU structure within 24 h. The research has a guiding significance for the research and progress of the new generation of energy-saving reefer containers and the insulation design of the envelope of refrigerated transportation equipment.
The paper assesses the threshold at which climate change impacts banking system stability in selected Sub-Saharan economies by applying the panel threshold regression on data spanning 1996 to 2017. The study found that temperature reported a threshold of −0.7316 ℃. Further, precipitation had a threshold of 7.1646 mm, while the greenhouse gas threshold was 3.6680 GtCO2eq. In addition, the climate change index recorded a threshold of −0.1751%. Overall, a non-linear relationship was established between climate change variables and banking system stability in selected Sub-Saharan economies. The study recommends that central banks and policymakers propagate the importance of climate change uncertainties and their threshold effects to banking sectors to ensure effective and stable banking system operations.
Copyright © by EnPress Publisher. All rights reserved.