Most airport development projects entail disputes due to the features that are distinctive and complicated. Disputes can be minimized through creative problem-solving by implementing knowledge management practices into the system. This study investigates the direct influence of knowledge management (KM) on dispute minimization (DM) along with the key factors for developing a strategy that can enhance KM success. A mixed method was adopted including statistical data analysis based on the PLS-SEM and descriptive analysis with the SECI (Socialization, Externalization, Combination, Internalization) model approach for strategy development. These findings show that KM has a positive and significant direct influence on DM, while the factors that are considered to have a significant influence on KM success are human resources management (HR) and learning & training (LT) on airport development projects in state-owned airport companies. This research supports the importance of a well-developed HR system accompanied by regular LT to all members of the organization to optimize and encourage the spread of knowledge in the organization.
Atomic interaction between mediator protein of human prostate cancer (PHPC) and Fe/C720 Buckyballs-Statin is important for medical science. For the first time, we use molecular dynamics (MD) approach based on Newton’s formalism to describe the destruction of PHPC via Fe/C720 Buckyballs-Statin with atomic accuracy. In this work, the atomic interaction of PHPC and Fe/C720 Buckyballs-Statin introduced via equilibrium molecular dynamics approach. In this method, each PHPC and Fe/C720 Buckyballs-Statin is defined by C, H, Cl, N, O, P, S, and Fe elements and contrived by universal force field (UFF) and DREIDING force-field to introduce their time evolution. The results of our studies regarding the dynamical behavior of these atom-base compounds have been reported by calculating the Potential energy, center of mass (COM) position, diffusion ratio and volume of defined systems. The estimated values for these quantities show the attraction force between Buckyball-based structure and protein sample, which COM distance of these samples changes from 10.27 Å to 2.96 Å after 10 ns. Physically, these interactions causing the destruction of the PHPC. Numerically, the volume of this biostructure enlarged from 665,276 Å3 to 737,143 Å3 by MD time passing. This finding reported for the first time which can be considered by the pharmaceutical industry. Simulations indicated the volume of the PHPC increases by Fe/C720 Buckyballs-Statin diffusion into this compound. By enlarging this quantity (diffusion coefficient), the atomic stability of PHPC decreases and protein destruction procedure fulfilled.
The two-phase flow in micro/mini channels is of fundamental importance for many interesting applications, such as cooling of micro-electronic components and devices by a compact heat exchanger, material processing and thin-film deposition technology, bioengineering, and biotechnology. This article discusses significant developments made in the past ten years by researchers in the fields of pool boiling and convective boiling, using water, nanofluids, and refrigerants as the working fluids. The literature's data is examined in terms of improvements and declines in the critical heat flow and nucleate boiling heat transfer.Conflicting data have been presented in the literature on the effect that nanofluids/refrigerants have on the boiling heat-transfer coefficient; however, almost all the researchers have noted an enhancement in the critical heat flux during nanofluid/refrigerant boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related to the critical heat flux enhancement.
A large number of publications devoted to a new class of materials - high-entropy alloys (HEA), is associated with their unique chemical, physical and mechanical properties both in cast materials and in various classes of coatings and refractory compounds. As a result of the research, the features of solid-soluble high-entropy alloys based on BCC and FCC phases have been revealed. These include the role of the most refractory element in the formation of the lattice parameter, the relationship of distortion with elastic deformation, and the contribution of the enthalpy of mixing to the strength and modulus of elasticity. This made it possible, on the basis of Hooke's law, to propose a formula for determining the hardness of the HEA based on the BCC and FCC phases. Based on the fact that with an increase in temperature in high-entropy alloys, the values of the modulus of elasticity, distortion and enthalpy of mixing will obey the same laws, a formula is proposed for determining the yield strength depending on the test temperature of solid-soluble HEA based on BCC and FCC phases. A formula based on the role of the most fusible metal in the alloy is proposed to calculate the melting point of solid-soluble materials.
The use of porous media to simplify the thermohydraulic of a nuclear reactor is the topic of recent research. As a case study, the rector of 200 kW installed at Missouri University of Science and Technology is modeled in this paper. To help this objective, a fundamental CFD examination was completed to supplement the neutronics investigation on the present reactor. Characteristics of thermal energy removal from a typical research reactor are modeled by numerical thermal transport in porous media. The neutron flux is modeled by the nodal expansion method. For the thermo-hydraulic part, a three-dimensional governing equation is solved by an iterative method to find the steady-state solution of fluid flow and temperature in loss of coolant condition where the heat produced in the reactor core is removed by free convection. The profiles of heat flux for various power levels are benchmarked. Pressure, temperature, and velocity contours in the power passage were assessed at 300 kW and 500 kW power levels. To reduce the computational cost, a porous media approach for the whole geometry was utilized. The numerical results agree with the experimental results. The developed model can be used for safety and reliability analysis for various loss of coolant accidents.
A new method has been proposed to estimate top heat losses of vertical flat plate liquid/air collectors with double glazing. Empirical relations have been developed for the temperatures of glass covers, thus facilitating the calculation of individual heat transfer coefficients. The values of individual heat transfer coefficients therefore obtained can be used in the proposed analytical equation for the estimation of the top heat loss coefficient of the vertical collector with double glazing. The analytical equation has been developed for collector tilt angle of 60 to 90 degrees, plate temperature of 323 K to 423 K, absorber coating emittance of 0.1 to 0.95, air gap spacing of 20 mm to 50mm between the plate and inner glass cover, air gap spacing of 20 mm to 50mm between glass covers, wind heat transfer coefficient of 5 W/m2K to 30 W/m2K, and ambient temperature of 263K to 313K. The accuracy of the analytical equation has been validated for the said range of variables in comparison to numerical solutions, and the values of the top heat loss coefficient are found to be within 2.5 percent compared to numerical solutions.
Copyright © by EnPress Publisher. All rights reserved.