With the improvement of people's living standards, water heaters almost into the various households. In the energy-saving emission reduction has become the trend of the times today, saving energy and reducing carbon emissions is the most fashionable way of life. Air source heat pump water heaters are increasingly being used in people's lives. It is well known that it has many advantages, safety, energy saving, comfort, environmental protection, but there are some factors that affect its development and promotion. This paper mainly discusses the development history of air source heat pump technology at home and abroad, working principle, working flow, turbo technology at present stage, efficient heat exchange, and the research status of air source heat pump technology, such as new type refrigerant and dual frequency compression frequency conversion, then it discusses the application of air source heat pump technology, has the advantage, and finally discusses its application and the existence of two major problems and suggestions for improvement.
Dushan county, Guizhou province, is located in the southernmost tip of Guizhou province. It belongs to the temperate climate of the subtropical region and is one of the centers of the karst east Asia area. The total area of the county is 242220 hectares, of which 169142 hectares are rocky desertifi cation or endangered desertification state. At present, the problem of rocky desertification has seriously affected the ecological environment of the county, which is one of the important factors that restrict the local social living standard and economic development. Therefore, it is of great significance to promote the social and economic development of the county by investigating and analyzing the spatial differentiation rules, present situation and harm of rocky desertification in Dushan county.
The effects of Zn2+ stress on seed germination, seedling growth and chlorophyll content were studied in order to better understand the effect of heavy metal Zn on the growth and development of green plants. The concentration gradient of Zn2+ was 20, 50,100,150,200,300,500,700mg / L, and deionized water was used as control. The results showed that under the Zn2+ stress condition, the germination index of the rhubarb seeds increased with the increase of Zn2+ concentration. Germination potential, germination rate and germination index were the highest when Zn2+concentration was 100mg / L, the conductivity was the lowest at zinc concentration of 100mg / L, the root length, stem length and chlorophyll content of Zn2+ gradually reduced. The results showed that the amount of Zn2+ could promote seed germination, but the root length, bud length and chlorophyll content of seedlings could be affected by different degrees. The zinc fertilizer should be used in the production.
In addition to create a beautiful and comfortable environment for human beings, it is more important to create an ecological environment suitable for human beings. Plant landscaping is no longer just the use of plants to create visual effects of the landscape, it also contains the ecological landscape, cultural landscape and even deeper meaning. In this article, the concept of ecological garden the benefits produced and the related content of plant landscaping are analyzed, and the situation of plant disposition and existing problems in Shenyang area are analyzed concretely.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Potassium is an essential macronutrient for living creatures on earth and in plants, it plays a very significant role in determining the overall health of the plants. Although potassium is present in the soil, it is present in a form that is inaccessible to the plants, and hence synthetic harmful non-eco-friendly potassium fertilizers are used. To overcome this problem, the use of eco-friendly potassium-solubilizing bacteria comes into play. The goal of the present study was to assess the potassium-solubilizing bacteria that inhabit the farm rhizosphere, which demonstrate the presence of enzymes associated with plant growth promotion and antagonistic properties. A total of thirty-four isolates were isolated from the rhizosphere. All these isolates were subjected to a potassium solubilization test on Aleksandrov agar medium, out of which fourteen were found to possess potassium solubilizing ability. On the basis of the 16S rRNA gene sequencing, the most potential potassium-solubilizing bacterium was identified as Proteus mirabilis PSCR17. The plant growth promoting abilities and production of biocontrol enzymes of this isolate were evaluated, and the results indicated, in addition to potassium solubilization, the isolate was positive for indole acetic acid production, hydrogen cyanide production, amylase, catalase, cellulase, chitinase, and protease. The use of potassium fertilizers is harmful to the environment and ecosystem; hence, this study concludes that P. mirabilis PSCR17 can be used as a substitute for chemical potassium fertilizers to improve the growth and biocontrol traits of the plants in a sustainable manner after further research.
Copyright © by EnPress Publisher. All rights reserved.