The concept of sustainable urban mobility has gained increasing attention in recent years due to the challenges posed by rapid urbanization and environmental degradation. The objective of this study is to explore the role of on-demand transportation in promoting sustainable urban mobility, incorporating insights from customer interests and demands through survey analysis. To fulfill this objective, a mixed-methods approach was employed, combining a systematic literature review with survey analysis of customer interests and demands regarding on-demand transportation services. This study combines a systematic literature review and a targeted survey to provide a comprehensive analysis of sustainable urban mobility, addressing gaps in understanding customer preferences alongside technological and financial considerations. The literature review encompassed various aspects including technological advancements, regulatory frameworks, user preferences, and environmental impacts. The survey analysis involved collecting data on customer preferences, satisfaction levels, and suggestions for improving on-demand transportation services. The findings of the study revealed significant insights into customer interests and demands regarding on-demand transportation services. Analysis of survey data indicated that factors such as convenience, affordability, reliability, and environmental sustainability were key considerations for customers when choosing on-demand transportation options. Additionally, the survey identified specific areas for improvement, including service coverage, accessibility, and integration with existing transportation networks. By providing flexible, efficient, and environmentally friendly transportation options, on-demand services have the potential to reduce congestions, improve air quality, and enhance overall urban livability.
This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
The paper assesses the threshold at which climate change impacts banking system stability in selected Sub-Saharan economies by applying the panel threshold regression on data spanning 1996 to 2017. The study found that temperature reported a threshold of −0.7316 ℃. Further, precipitation had a threshold of 7.1646 mm, while the greenhouse gas threshold was 3.6680 GtCO2eq. In addition, the climate change index recorded a threshold of −0.1751%. Overall, a non-linear relationship was established between climate change variables and banking system stability in selected Sub-Saharan economies. The study recommends that central banks and policymakers propagate the importance of climate change uncertainties and their threshold effects to banking sectors to ensure effective and stable banking system operations.
The expanding adoption of artificial intelligence systems across high-impact sectors has catalyzed concerns regarding inherent biases and discrimination, leading to calls for greater transparency and accountability. Algorithm auditing has emerged as a pivotal method to assess fairness and mitigate risks in applied machine learning models. This systematic literature review comprehensively analyzes contemporary techniques for auditing the biases of black-box AI systems beyond traditional software testing approaches. An extensive search across technology, law, and social sciences publications identified 22 recent studies exemplifying innovations in quantitative benchmarking, model inspections, adversarial evaluations, and participatory engagements situated in applied contexts like clinical predictions, lending decisions, and employment screenings. A rigorous analytical lens spotlighted considerable limitations in current approaches, including predominant technical orientations divorced from lived realities, lack of transparent value deliberations, overwhelming reliance on one-shot assessments, scarce participation of affected communities, and limited corrective actions instituted in response to audits. At the same time, directions like subsidiarity analyses, human-cent
Rural sub-Saharan Africa faces limited medical access, healthcare worker shortages, and inadequate health information systems. Mobile health (mHealth) technologies offer potential solutions but remain underdeveloped in these settings. This review aims to explore the sociocultural context of mHealth adoption in rural sub-Saharan Africa to support sustainable implementation. A comprehensive Enhancing Transparency in Reporting the Synthesis of Qualitative Research (ENTREQ) search was conducted in databases like PubMed, MEDLINE, and African Journals Online, covering peer-reviewed literature from 2010 to 2024. Qualitative studies of mHealth interventions were included, with quality assessed via the Critical Appraisal Skills Program (CASP) checklist and data synthesized using a meta-ethnographic approach. Out of 892 studies, 38 met the inclusion criteria. Key findings include sociocultural factors like community trust influencing technology acceptance, local implementation strategies, user empowerment in health decisions, and innovative solutions for infrastructure issues. Challenges include privacy concerns, increased healthcare worker workload, and intervention sustainability. While mHealth can reduce healthcare barriers, success depends on sociocultural alignment and adaptability. Future interventions should prioritize community co-design, privacy protection, and sustainable, infrastructure-aware models.
Copyright © by EnPress Publisher. All rights reserved.