Given the heavy workload faced by teachers, automatic speaking scoring systems provide essential support. This study aims to consolidate technological configurations of automatic scoring systems for spontaneous L2 English, drawing from literature published between 2014 and 2024. The focus will be on the architecture of the automatic speech recognition model and the scoring model, as well as on features used to evaluate phonological competence, linguistic proficiency, and task completion. By synthesizing these elements, the study seeks to identify potential research areas, as well as provide a foundation for future research and practical applications in software engineering.
In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
In Côte d’Ivoire, the government and its development partners have implemented a national strategy to promote agroforestry and reforestation systems as a means to combat deforestation, primarily driven by agricultural expansion, and to increase national forest cover to 20% by 2045. However, the assessment of these systems through traditional field-based methods remains labor-intensive and time-consuming, particularly for the measurement of dendrometric parameters such as tree height. This study introduces a remote sensing approach combining drone-based Airborne Laser Scanning (ALS) with ground-based measurements to enhance the efficiency and accuracy of tree height estimation in agroforestry and reforestation contexts. The methodology involved two main stages: first, the collection of floristic and dendrometric data, including tree height measured with a laser rangefinder, across eight (8) agroforestry and reforestation plots; second, the acquisition of ALS data using Mavic 3E and Matrice 300 drones equipped with LiDAR sensors to generate digital canopy models for tree height estimation and associated error analysis. Floristic analysis identified 506 individual trees belonging to 27 genera and 18 families. Tree height measurements indicated that reforestation plots hosted the tallest trees (ranging from 8 to 16 m on average), while cocoa-based agroforestry plots featured shorter trees, with average heights between 4 and 7 m. A comparative analysis between ground-based and LiDAR-derived tree heights showed a strong correlation (R2 = 0.71; r = 0.84; RMSE = 2.24 m; MAE = 1.67 m; RMSE = 2.2430 m and MAE = 1.6722 m). However, a stratified analysis revealed substantial variation in estimation accuracy, with higher performance observed in agroforestry plots (R2 = 0.82; RMSE = 2.21 m and MAE = 1.43 m). These findings underscore the potential of Airborne Laser Scanning as an effective tool for the rapid and reliable estimation of tree height in heterogeneous agroforestry and reforestation systems.
Mangrove forests are vital to coastal protection, biodiversity support, and climate regulation. In the Niger Delta, these ecosystems are increasingly threatened by oil spill incidents linked to intensive petroleum activities. This study investigates the extent of mangrove degradation between 1986 and 2022 in the lower Niger Delta, specifically the region between the San Bartolomeo and Imo Rivers, using remote sensing and machine learning. Landsat 5 TM (1986) and Landsat 8 OLI (2022) imagery were classified using the Support Vector Machine (SVM) algorithm. Classification accuracy was high, with overall accuracies of 98% (1986) and 99% (2022) and Kappa coefficients of 0.97 and 0.98. Healthy mangrove cover declined from 2804.37 km2 (58%) to 2509.18 km2 (52%), while degraded mangroves increased from 72.03 km2 (1%) to 327.35 km2 (7%), reflecting a 354.46% rise. Water bodies expanded by 101.17 km2 (5.61%), potentially due to dredging, erosion, and sea-level rise. Built-up areas declined from 131.85 km2 to 61.14 km2, possibly reflecting socio-environmental displacement. Statistical analyses, including Chi-square (χ2 = 1091.33, p < 0.001) and Kendall’s Tau (τ = 1, p < 0.001), showed strong correlations between oil spills and mangrove degradation. From 2012 to 2022, over 21,914 barrels of oil were spilled, with only 38% recovered. Although paired t-tests and ANOVA results indicated no statistically significant changes at broad scales, localized ecological shifts remain severe. These findings highlight the urgent need for integrated environmental policies and restoration efforts to mitigate mangrove loss and enhance sustainability in the Niger Delta.
Intellectual capital is one of the most crucial determinants of long-term economic development. The countries compete for highly skilled labor and talented youth. State regulatory interventions aim to, on the one hand, facilitate the retention of foreign high-productivity intellectual capital in the host country, transforming ‘educational’ and ‘scientific’ migrants into residents, and on the other hand, prevent the outflow of their own qualified workforce. The paper aims to outline the role of the nation’s higher education system in the influx and outflow of labor resources. A two-stage approach is applied: 1) maximum likelihood—to cluster the EU countries and the potential candidates to become members of EU countries based on the integrated competitiveness of their higher education systems, considering quantitative, qualitative, and internationalization aspects; 2) logit and probit models—to estimate the likelihood of net migration flow surpassing baseline cluster levels and the probability of migration intensity changes for each cluster. Empirical findings allow the identification of four country clusters. Forecasts indicate the highest likelihood of increased net migration flow in the second cluster (66.7%) and a significant likelihood in the third cluster (23.4%). However, the likelihood of such an increase is statistically insignificant for countries in the first and fourth clusters. The conclusions emphasize the need for regulatory interventions that enhance higher education quality, ensure equal access for migrants, foster population literacy, and facilitate lifelong learning. Such measures are imperative to safeguard the nation’s intellectual potential and deter labor emigration.
Amid the unfolding Fourth Industrial Revolution, the integration of Logistics 4.0 with agribusiness has emerged as a pivotal nexus, harboring potential for transformational change while concurrently presenting multifaceted challenges. Through a meticulous content analysis, this systematic review delves deeply into the existing body of literature, elucidating the profound capacities of Logistics 4.0 in alleviating supply chain disruptions and underscoring its pivotal role in fostering value co-creation within agro-industrial services. The study sheds light on the transformative potential vested within nascent technologies, such as Internet of Things (IoT), Blockchain, and Artificial Intelligence (AI), and their promise in shaping the future landscape of agribusiness. However, the path forward is not without impediments; the research identifies cardinal barriers, most notably the absence of robust governmental policies and a pervasive lack of awareness, which collectively stymie the seamless incorporation of Industry 4.0 technologies within the realm of agribusiness. Significantly, this inquiry also highlights advancements in sustainable supply chain management, drawing attention to pivotal domains including digitalization, evolving labor paradigms, supply chain financing innovations, and heightened commitments to social responsibility. As we stand on the cusp of technological evolution, the study offers a forward-looking perspective, anticipating a subsequent transition towards Industry 5.0, characterized by the advent of hyper-cognitive systems, synergistic robotics, and AI-centric supply chains. In its culmination, the review presents prospective avenues for future research, emphasizing the indispensable need for relentless exploration and pragmatic solutions. This comprehensive synthesis not only sets the stage for future research endeavors but also extends invaluable insights for practitioners, policymakers, and academicians navigating the intricate labyrinthstry of Logistics 4.0 in agribusiness.
Copyright © by EnPress Publisher. All rights reserved.